ﻻ يوجد ملخص باللغة العربية
In weakly nonlinear dispersive systems, solitons are spatially localized solutions which propagate without changing shape through a delicate balance between dispersion and self-focusing nonlinear effects. These states have been extensively studied in Bose-Einstein condensates, where interatomic interactions give rise to such nonlinearities. Previous experimental work with matter wave solitons has been limited to static intensity profiles. The creation of matter wave breathers--dispersionless soliton-like states with collective oscillation frequencies driven by attractive mean-field interactions--have been of theoretical interest due to the exotic behaviour of interacting matter wave systems. Here, using an attractively interacting Bose-Einstein condensate, we present the first observation of matter wave breathers. A comparison between experimental data and a cubic-quintic Gross-Pitaevskii equation suggests that previously unobserved three-body interactions may play an important role in this system. The observation of long lived stable breathers in an attractively interacting matter wave system indicates that there is a wide range of previously unobserved, but theoretically predicted, effects that are now experimentally accessible.
A fluid is said to be emph{scale-invariant} when its interaction and kinetic energies have the same scaling in a dilation operation. In association with the more general conformal invariance, scale invariance provides a dynamical symmetry which has p
Thermodynamic properties of matter are conveniently expressed as functional relations between variables known as equations of state. Here we experimentally determine the compressibility, density and pressure equations of state for an attractive 2D Fe
We study the dynamics of a soliton-impurity system modeled in terms of a binary Bose-Einstein condensate. This is achieved by `switching off one of the two self-interaction scattering lengths, giving a two component system where the second component
The spin dynamics of a harmonically trapped Bose-Einstein condensed binary mixture of sodium atoms is experimentally investigated at finite temperature. In the collisional regime the motion of the thermal component is shown to be damped because of sp
We provide experimental evidence of universal dynamics far from equilibrium during the relaxation of an isolated one-dimensional Bose gas. Following a rapid cooling quench, the system exhibits universal scaling in time and space, associated with the