ﻻ يوجد ملخص باللغة العربية
We theoretically study the local density of states in superconducting proximity structure where two superconducting terminals are attached to a side surface of a normal-metal wire. Using the quasiclassical Greens function method, the energy spectrum is obtained for both of spin-singlet $s$-wave and spin-triplet $p$-wave junctions. In both of the cases, the decay length of the proximity effect at the zero temperature is limited by a depairing effect due to inelastic scatterings. In addition to the depairing effect, in $p$-wave junctions, the decay length depends sensitively on the transparency at the junction interfaces, which is a unique property to odd-parity superconductors where the anomalous proximity effect occurs.
Attaching a superconductor in good contact with a normal metal makes rise to a proximity effect where the superconducting correlations leak into the normal metal. An additional contact close to the first one makes it possible to carry a supercurrent
Oxygen NMR is used to probe the local influence of nonmagnetic Zn and magnetic Ni impurities in the superconducting state of optimally doped high Tc YBa2Cu3O7. Zn and Ni induce a staggered paramagnetic polarization, similar to that evidenced above Tc
We investigate the electron-phonon cooling power in disordered electronic systems with a special focus on mesoscopic superconducting proximity structures. Employing the quasiclassical Keldysh Greens function method, we obtain a general expression for
High temperature superconductors with a Tc above 40 K have been found to be strongly correlated electron systems and to have a layered structure. Guided by these rules, Kamihara et al. discovered a Tc up to 26 K in the layered La(O1-xFx)FeAs. By repl
I investigate superconducting states in a quasi-2D Holstein model using the dynamical cluster approximation (DCA). The effects of spatial fluctuations (non-local corrections) are examined and approximations neglecting and incorporating lowest-order v