ترغب بنشر مسار تعليمي؟ اضغط هنا

Electron cooling by phonons in superconducting proximity structures

110   0   0.0 ( 0 )
 نشر من قبل Wolfgang Belzig
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the electron-phonon cooling power in disordered electronic systems with a special focus on mesoscopic superconducting proximity structures. Employing the quasiclassical Keldysh Greens function method, we obtain a general expression for the cooling power perturbative in the electron-phonon coupling, but valid for arbitrary electronic systems out of equilibrium. We apply our theory to several disordered electronic systems valid for an arbitrary relation between the thermal phonon wavelength and the electronic mean free path due to impurity scattering. Besides recovering the known results for bulk normal metals and BCS superconductors, we consider two experimentally relevant geometries of superconductor-normal metal proximity contacts. Both structures feature a significantly suppressed cooling power at low temperatures related to the existence of a minigap in the quasiparticle spectrum. This improved isolation low cooling feature in combination with the high tunability makes such structures highly promising candidates for quantum calorimetry



قيم البحث

اقرأ أيضاً

Attaching a superconductor in good contact with a normal metal makes rise to a proximity effect where the superconducting correlations leak into the normal metal. An additional contact close to the first one makes it possible to carry a supercurrent through the metal. Forcing this supercurrent flow along with an additional quasiparticle current from one or many normal-metal reservoirs makes rise to many interesting effects. The supercurrent can be used to tune the local energy distribution function of the electrons. This mechanism also leads to finite thermoelectric effects even in the presence of electron-hole symmetry. Here we review these effects and discuss to which extent the existing observations of thermoelectric effects in metallic samples can be explained through the use of the dirty-limit quasiclassical theory.
134 - A. C. Betz , F. Vialla , D. Brunel 2012
We have investigated the energy loss of hot electrons in metallic graphene by means of GHz noise thermometry at liquid helium temperature. We observe the electronic temperature T / V at low bias in agreement with the heat diffusion to the leads descr ibed by the Wiedemann-Franz law. We report on $Tproptosqrt{V}$ behavior at high bias, which corresponds to a T4 dependence of the cooling power. This is the signature of a 2D acoustic phonon cooling mechanism. From a heat equation analysis of the two regimes we extract accurate values of the electron-acoustic phonon coupling constant $Sigma$ in monolayer graphene. Our measurements point to an important effect of lattice disorder in the reduction of $Sigma$, not yet considered by theory. Moreover, our study provides a strong and firm support to the rising field of graphene bolometric detectors.
205 - I. Schnell , I. I. Mazin , 2006
The possibility of non-s-wave superconductivity induced by phonons is investigated using a simple model that is inspired by Sr$_2$RuO$_4$. The model assumes a two-dimensional electronic structure, a two-dimensional spin-fluctuation spectrum, and thre e-dimensional electron-phonon coupling. Taken separately, each interaction favors formation of spin-singlet pairs (of s symmetry for the phonon interaction and d$_{x^2-y^2}$ symmetry for the spin interaction), but in combination, a variety of more unusual singlet and triplet states are found, depending on the interaction parameters. This may have important implications for Sr$_2$RuO$_4$, providing a plausible explanation of how the observed spin fluctuations, which clearly favor d$_{x^2-y^2}$ pairing, may still be instrumental in creating a superconducting state with a different (e.g., p-wave) symmetry. It also suggests an interpretation of the large isotope effect observed in Sr$_2$RuO$_4$. These results indicate that phonons could play a key role in establishing the order-parameter symmetry in Sr$_2$RuO$_4$, and possibly in other unconventional superconductors.
We discuss the theoretical framework to describe quasiparticle electric and heat currents in NIS tunnel junctions in the dirty limit. The approach is based on quasiclassical Keldysh-Usadel equations. We apply this theory to diffusive NISS tunnel junc tions. Here N and S are respectively normal metal and superconductor reservoirs, I is an insulator layer and S is a nonequilibrium superconducting lead. We calculate the quasiparticle electric and heat currents in such structures and consider the effect of inelastic relaxation in the S lead. We find that in the absence of strong relaxation the electric current and the cooling power for voltages $eV < Delta$ are suppressed. The value of this suppression scales with the diffusive transparency parameter. We ascribe this suppression to the effect of backtunneling of nonequilibrium quasiparticles into the normal metal.
Laser cooling of the atomic motion paved the way for remarkable achievements in the fields of quantum optics and atomic physics, including Bose-Einstein condensation and the trapping of atoms in optical lattices. More recently superconducting qubits were shown to act as artificial two-level atoms, displaying Rabi oscillations, Ramsey fringes, and further quantum effects. Coupling such qubits to resonators brought the superconducting circuits into the realm of quantum electrodynamics (circuit QED). It opened the perspective to use superconducting qubits as micro-coolers or to create a population inversion in the qubit to induce lasing behavior of the resonator. Furthering these analogies between quantum optical and superconducting systems we demonstrate here Sisyphus cooling of a low frequency LC oscillator coupled to a near-resonantly driven superconducting qubit. In the quantum optics setup the mechanical degrees of freedom of an atom are cooled by laser driving the atoms electronic degrees of freedom. Here the roles of the two degrees of freedom are played by the LC circuit and the qubits levels, respectively. We also demonstrate the counterpart of the Sisyphus cooling, namely Sisyphus amplification. Parallel to the experimental demonstration we analyze the system theoretically and find quantitative agreement, which supports the interpretation and allows us to estimate system parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا