ﻻ يوجد ملخص باللغة العربية
As deep learning continues to make progress for challenging perception tasks, there is increased interest in combining vision, language, and decision-making. Specifically, the Vision and Language Navigation (VLN) task involves navigating to a goal purely from language instructions and visual information without explicit knowledge of the goal. Recent successful approaches have made in-roads in achieving good success rates for this task but rely on beam search, which thoroughly explores a large number of trajectories and is unrealistic for applications such as robotics. In this paper, inspired by the intuition of viewing the problem as search on a navigation graph, we propose to use a progress monitor developed in prior work as a learnable heuristic for search. We then propose two modules incorporated into an end-to-end architecture: 1) A learned mechanism to perform backtracking, which decides whether to continue moving forward or roll back to a previous state (Regret Module) and 2) A mechanism to help the agent decide which direction to go next by showing directions that are visited and their associated progress estimate (Progress Marker). Combined, the proposed approach significantly outperforms current state-of-the-art methods using greedy action selection, with 5% absolute improvement on the test server in success rates, and more importantly 8% on success rates normalized by the path length. Our code is available at https://github.com/chihyaoma/regretful-agent .
The Vision-and-Language Navigation (VLN) task entails an agent following navigational instruction in photo-realistic unknown environments. This challenging task demands that the agent be aware of which instruction was completed, which instruction is
The case difference heuristic (CDH) approach is a knowledge-light method for learning case adaptation knowledge from the case base of a case-based reasoning system. Given a pair of cases, the CDH approach attributes the difference in their solutions
Three years ago, we released the Omniglot dataset for one-shot learning, along with five challenge tasks and a computational model that addresses these tasks. The model was not meant to be the final word on Omniglot; we hoped that the community would
Predicting accurate future trajectories of multiple agents is essential for autonomous systems, but is challenging due to the complex agent interaction and the uncertainty in each agents future behavior. Forecasting multi-agent trajectories requires
Skillful mobile operation in three-dimensional environments is a primary topic of study in Artificial Intelligence. The past two years have seen a surge of creative work on navigation. This creative output has produced a plethora of sometimes incompa