ﻻ يوجد ملخص باللغة العربية
We have previously presented a reconstruction of Horndeski scalar-tensor theories from linear cosmological observables. It includes free nonlinear terms which can be added onto the reconstructed covariant theory without affecting the background and linear dynamics. After discussing the uniqueness of these correction terms, we apply this nonlinear freedom to a range of different applications. First we demonstrate how the correction terms can be configured to endow the reconstructed models with screening mechanisms such as the chameleon, k-mouflage and Vainshtein effects. A further implication is the existence of classes of Horndeski models that are degenerate with standard cosmology to an arbitrary level in the cosmological perturbations. Particularly interesting examples are kinetically self-accelerating models that mimic the dynamics of the cosmological constant to an arbitrary degree in perturbations. Finally, we develop the reconstruction method further to the level of higher-order effective field theory, which under the restriction to a luminal propagation speed of gravitational waves introduces two new free functions per order. These functions determine the corresponding correction terms in the linearly reconstructed action at the same order. Our results enable the connection of linear cosmological constraints on generalised modifications of gravity and dark energy with the nonlinear regime and astrophysical probes for a more global interpretation of the wealth of forthcoming cosmological survey data.
In this paper we show that an equivalence between Horndeski and beyond Horndeski theories and general relativity with an effective imperfect fluid can be formally established. The formal equivalence is discussed for several particular cases of intere
The Horndeski theories are extended into the Lovelock gravity theory. When the canonical scalar field is uniquely kinetically coupled to the Lovelock tensors, it is named after Lovelock scalar field. The Lovelock scalar field model is a subclass of t
The gravitational-wave event GW170817 from a binary neutron star merger together with the electromagnetic counterpart showed that the speed of gravitational waves $c_t$ is very close to that of light for the redshift $z<0.009$. This places tight cons
We summarise the effective field theory of dark energy construction to explore observable predictions of linear Horndeski theories. Based on cite{Perenon:2016blf}, we review the diagnostic of these theories on the correlation of the large-scale struc
We study the structure of scalar-tensor theories of gravity based on derivative couplings between the scalar and the matter degrees of freedom introduced through an effective metric. Such interactions are classified by their tensor structure into con