ﻻ يوجد ملخص باللغة العربية
Halos and galaxies acquire their angular momentum during the collapse of surrounding large-scale structure. This process imprints alignments between galaxy spins and nearby filaments and sheets. Low mass halos grow by accretion onto filaments, aligning their spins with the filaments, whereas high mass halos grow by mergers along filaments, generating spins perpendicular to the filament. We search for this alignment signal using filaments identified with the Cosmic Web Reconstruction algorithm applied to the Sloan Digital Sky Survey Main Galaxy Sample and galaxy spins from the MaNGA integral-field unit survey. MaNGA produces a map of the galaxys rotational velocity, allowing direct measurement of the galaxys spin direction, or unit angular momentum vector projected onto the sky. We find no evidence for alignment between galaxy spins and filament directions. We do find hints of a mass-dependent alignment signal, which is in 2-3$sigma$ tension with the mass-dependent alignment signal in the MassiveBlack-II and Illustris hydrodynamical simulations. However, the tension vanishes when galaxy spin is measured using the H$alpha$ emission line velocity rather than stellar velocity. Finally, in simulations we find that the mass-dependent transition from aligned to anti-aligned dark matter halo spins is not necessarily present in stellar spins: we find a stellar spin transition in Illustris but not in MassiveBlack-II, highlighting the sensitivity of spin-filament alignments to feedback prescriptions and subgrid physics.
The orientations of the red galaxies in a filament are aligned with the orientation of the filament. We thus develop a location-alignment-method (LAM) of detecting filaments around clusters of galaxies, which uses both the alignments of red galaxies
In this paper, we investigate 2727 galaxies observed by MaNGA as of June 2016 to develop spatially resolved techniques for identifying signatures of active galactic nuclei (AGN). We identify 303 AGN candidates. The additional spatial dimension impose
We investigate the 3D spin alignment of galaxies with respect to the large-scale filaments using the MaNGA survey. The cosmic web is reconstructed from the Sloan Digital Sky Survey using Disperse and the 3D spins of MaNGA galaxies are estimated using
Galaxy clusters are the most massive collapsed structures in the universe whose potential wells are filled with hot, X-ray emitting intracluster medium. Observations however show that a significant number of clusters (the so-called cool-core clusters
Galaxies, as well as their satellites, are known to form within the cosmic web: the large, multi-scale distribution of matter in the universe. It is known that the surrounding large scale structure (LSS) can impact and influence the formation of gala