ترغب بنشر مسار تعليمي؟ اضغط هنا

The alignment of satellite systems with cosmic filaments in the SDSS DR12

115   0   0.0 ( 0 )
 نشر من قبل Peng Wang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Peng Wang




اسأل ChatGPT حول البحث

Galaxies, as well as their satellites, are known to form within the cosmic web: the large, multi-scale distribution of matter in the universe. It is known that the surrounding large scale structure (LSS) can impact and influence the formation of galaxies, e.g. the spin and shape of haloes or galaxies are correlated with the LSS and the correlation depends on halo mass or galaxy morphology. In this work, we use group and filament catalogues constructed from the SDSS DR12 to investigate the correlation between satellite systems and the large scale filaments they are located in. We find that the distribution of satellites is significantly correlated with filaments, namely the major axis of the satellite systems are preferentially aligned with the spine of the closest filament. Stronger alignment signals are found for the cases where the system away from the filament spine, while systems close to the filament spine show significantly weaker alignment. Our results suggest that satellites are accreted along filaments, which agrees with previous works. The case of which away from the filament spine may help us to understand how the filament forms as well as the peculiar satellite distribution in the Local Universe.



قيم البحث

اقرأ أيضاً

We investigate whether the satellite luminosity function (LF) of primary galaxies identified in the Sloan Digital Sky Survey (SDSS) depends on whether the host galaxy is in a filament or not. Isolated primary galaxies are identified in the SDSS spect roscopic sample while potential satellites (that are up to 4 magnitudes fainter than their hosts) are searched for in the much deeper photometric sample. Filaments are constructed from the galaxy distribution by the Bisous process. Isolated primary galaxies are divided into two subsamples: those in filaments and those not in filaments. We examine the stacked mean satellite LF of both the filament and non-filament sample and find that, on average, the satellite LFs of galaxies in filaments is significantly higher than those of galaxies not in filaments. The filamentary environment can increases the abundance of the brightest satellites ($M_mathrm{sat.} < M_mathrm{prim.} + 2.0$), by a factor of $sim 2$ compared with non-filament isolated galaxies. This result is independent of primary galaxy magnitude although the satellite LF of galaxies in the faintest magnitude bin, is too noisy to determine if such a dependence exists. Since our filaments are extracted from a spectroscopic flux-limited sample, we consider the possibility that the difference in satellite LF is due to a redshift, colour or environmental bias, finding these to be insufficient to explain our result. The dependence of the satellite LF on the cosmic web suggests that the filamentary environment may have a strong effect on the efficiency of galaxy formation.
It has been shown, both in simulations and observationally, that the tidal field of a large galaxy can torque its satellites such that the major axis of satellite galaxies points towards their hosts. This so-called `shape alignment has been observed in isolated Milky Way-like galaxies but not in `Local Group-like pairs. In this study, we investigate the shape alignment of satellite galaxies in galaxy pairs similar to the Local Group identified in the Sloan Digital Sky Survey Data Release 13 (SDSS DR13). By stacking tens of thousands of satellite galaxies around primary galaxy pairs, we find two statistically strong alignment signals. (1) The major axes of satellite galaxies located in the (projected) area between two primaries (the {it facing} region) tend to be perpendicular to the line connecting the satellite to its host (tangential alignment), while (2) the major axes of satellite galaxies located in regions away from the other host (the {it away} region) tend to be aligned with the line connecting the satellite to its host (radial alignment). These alignments are confirmed at $sim5sigma$ levels. The alignment signal increases with increasing primary brightness, decreasing pair separation, and decreasing satellite distance. The alignment signal is also found to be stronger in filamentary environments. These findings will shed light on understanding the mechanisms of how satellite galaxies are affected by the tidal field in galaxy pairs and will be useful for investigating galaxy intrinsic alignment in the analyses of weak gravitational lensing.
104 - E. Tempel , Q. Guo , R. Kipper 2015
The accretion of satellites onto central galaxies along vast cosmic filaments is an apparent outcome of the anisotropic collapse of structure in our Universe. Numerical work (based on gravitational dynamics of N-body simulations) indicates that satel lites are beamed towards hosts along preferred directions imprinted by the velocity shear field. Here we use the Sloan Digital Sky Survey to observationally test this claim. We construct 3D filaments and sheets and examine the relative position of satellite galaxies. A statistically significant alignment between satellite galaxy position and filament axis in observations is confirmed. We find a qualitatively compatible alignments by examining satellites and filaments similarly identified in the Millennium simulation, semi-analytical galaxy catalogue. We also examine the dependence of the alignment strength on galaxy properties such as colour, magnitude and (relative) satellite magnitude, finding that the alignment is strongest for the reddest and brightest central and satellite galaxies. Our results confirm the theoretical picture and the role of the cosmic web in satellite accretion. Furthermore our results suggest that filaments identified on larger scales can be reflected in the positions of satellite galaxies that are quite close to their hosts.
240 - Peng Wang 2018
The alignment between satellites and central galaxies has been studied in detail both in observational and theoretical works. The widely accepted fact is that the satellites preferentially reside along the major axis of their central galaxy. However, the origin and large-scale environment dependence of this alignment are still unknown. In an attempt to figure out those, we use data constructed from SDSS DR7 to investigate the large-scale environmental dependence of this alignment with emphasis on examining the alignments dependence on the colour of the central galaxy. We find a very strong large-scale environmental dependence of the satellite-central alignment in groups with blue centrals. Satellites of blue centrals in knots are preferentially located perpendicular to the major axis of the centrals, and the alignment angle decreases with environment namely when going from knots to voids. The alignment angle strongly depend on the ${}^{0.1}(g-r)$ colour of centrals. We suggest that the satellite-central alignment is the result of a competition between satellite accretion within large scale-structure and galaxy evolution inside host haloes. For groups containing red central galaxies, the satellite-central alignment is mainly determined by the evolution effect, while for blue central dominated groups, the effect of large-scale structure plays a more important role, especially in knots. Our results provide an explanation for how the satellite-central alignment forms within different large-scale environments. The perpendicular case in groups and knots with blue centrals may also provide insight into understanding similar polar arrangements such the formation of the Milky Way and Centaurus As satellite system.
We investigate the impact of filament and void environments on galaxies, looking for residual effects beyond the known relations with environment density. We quantified the host environment of galaxies as the distance to the spine of the nearest fila ment, and compared various galaxy properties within 12 bins of this distance. We considered galaxies up to 10 $h^{-1}$Mpc from filaments, i.e. deep inside voids. The filaments were defined by a point process (the Bisous model) from the Sloan Digital Sky Survey data release 10. In order to remove the dependence of galaxy properties on the environment density and redshift, we applied weighting to normalise the corresponding distributions of galaxy populations in each bin. After the normalisation with respect to environment density and redshift, several residual dependencies of galaxy properties still remain. Most notable is the trend of morphology transformations, resulting in a higher elliptical-to-spiral ratio while moving from voids towards filament spines, bringing along a corresponding increase in the $g-i$ colour index and a decrease in star formation rate. After separating elliptical and spiral subsamples, some of the colour index and star formation rate evolution still remains. The mentioned trends are characteristic only for galaxies brighter than about $M_{r} = -20$ mag. Unlike some other recent studies, we do not witness an increase in the galaxy stellar mass while approaching filaments. The detected transformations can be explained by an increase in the galaxy-galaxy merger rate and/or the cut-off of extragalactic gas supplies (starvation) near and inside filaments. Unlike voids, large-scale galaxy filaments are not a mere density enhancement, but have their own specific impact on the constituent galaxies, reducing the star formation rate and raising the chances of elliptical morphology also at a fixed environment density level.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا