ﻻ يوجد ملخص باللغة العربية
The applicability of a linearized perturbed FLRW metric to the late, lumpy universe has been subject to debate. We consider in an elementary way the Newtonian limit of the Einstein equations with this ansatz for the case of structure formation in late-time cosmology, on small and large scales, and argue that linearizing the Einstein tensor produces only a small error down to arbitrarily small, decoupled scales (e.g. Solar system scales). On subhorizon patches, the metric scale factor becomes a coordinate choice equivalent to choosing the spatial curvature, and not a sign that the FLRW metric cannot perturbatively accommodate very different local physical expansion rates of matter; we distinguish these concepts, and show that they merge on large scales for the Newtonian limit to be globally valid. Furthermore, on subhorizon scales, a perturbed FLRW metric ansatz does not already imply assumptions on isotropy, and effects beyond an FLRW background, including those potentially caused by non-linearities of general relativity (GR), may be encoded into non-trivial boundary conditions. The corresponding cosmologies have already been developed in a Newtonian setting by Heckmann and Schucking and none of these boundary conditions can explain the accelerated expansion of the universe. Our analysis of the field equations is confirmed on the level of solutions by an example of pedagogical value, comparing a collapsing top-hat overdensity (embedded into a cosmological background) treated in such perturbative manner to the corresponding exact solution of GR, where we find good agreement even in the regimes of strong density contrast.
We study the validity of the Newtonian description of cosmological perturbations using the Lemaitre model, an exact spherically symmetric solution of Einsteins equation. This problem has been investigated in the past for the case of a dust fluid. Her
C-theory provides a unified framework to study metric, metric-affine and more general theories of gravity. In the vacuum weak-field limit of these theories, the parameterized post-Newtonian (PPN) parameters $beta$ and $gamma$ can differ from their ge
We determine the complete space-time metric from the bootstrapped Newtonian potential generated by a static spherically symmetric source in the surrounding vacuum. This metric contains post-Newtonian parameters which can be further used to constrain
We study the consequences of the $f(R/Box)$ gravity models for the Solar system and the large scale structure of the universe. The spherically symmetric solutions can be used to obtain bounds on the constant and the linear parts of the correction ter
Based on an examination of the solutions to the Killing Vector equations for the FLRW-metric in co moving coordinates , it is conjectured and proved that the components(in these coordinates) of Killing Vectors, when suitably scaled by functions, are