ﻻ يوجد ملخص باللغة العربية
We have designed and tested a parallel 8-bit ERSFQ binary shifter that is one of the essential circuits in the design of the energy-efficient superconducting CPU. The binary shifter performs a bi-directional SHIFT instruction of an 8-bit argument. It consists of a bi-direction triple-port shift register controlled by two (left and right) shift pulse generators asynchronously generating a set number of shift pulses. At first clock cycle, an 8-bit word is loaded into the binary shifter and a 3-bit shift argument is loaded into the desired shift-pulse generator. Next, the generator produces the required number of shift SFQ pulses (from 0 to 7) asynchronously, with a repetition rate set by the internal generator delay of ~ 30 ps. These SFQ pulses are applied to the left (positive) or the right (negative) input of the binary shifter. Finally, after the shift operation is completed, the resulting 8-bit word goes to the parallel output. The complete 8-bit ERSFQ binary shifter, consisting of 820 Josephson junctions, was simulated and optimized using PSCAN2. It was fabricated in MIT Lincoln Lab 10-kA/cm2 SFQ5ee fabrication process with a high-kinetic inductance layer. We have successfully tested the binary shifter at both the LSB-to-MSB and MSB-to-LSB propagation regimes for all eight shift arguments. A single shift operation on a single input word demonstrated operational margins of +/-16% of the dc bias current. The correct functionality of the 8-bit ERSFQ binary shifter with the large, exhaustive data pattern was observed within +/-10% margins of the dc bias current. In this paper, we describe the design and present the test results for the ERSFQ 8-bit parallel binary shifter.
We have designed and tested a parallel 8-bit ERSFQ arithmetic logic unit (ALU). The ALU design employs wave-pipelined instruction execution and features modular bit-slice architecture that is easily extendable to any number of bits and adaptable to c
The rapid development of Artificial Intelligence (AI) and Internet of Things (IoT) increases the requirement for edge computing with low power and relatively high processing speed devices. The Computing-In-Memory(CIM) schemes based on emerging resist
Deformable convolution networks (DCNs) proposed to address the image recognition with geometric or photometric variations typically involve deformable convolution that convolves on arbitrary locations of input features. The locations change with diff
Image bitmaps have been widely used in in-memory applications, which consume lots of storage space and energy. Compared with legacy DRAM, non-volatile memories (NVMs) are suitable for bitmap storage due to the salient features in capacity and power s
Deep neural network (DNN) accelerators received considerable attention in past years due to saved energy compared to mainstream hardware. Low-voltage operation of DNN accelerators allows to further reduce energy consumption significantly, however, ca