ﻻ يوجد ملخص باللغة العربية
Haptic exploration is a key skill for both robots and humans to discriminate and handle unknown objects or to recognize familiar objects. Its active nature is evident in humans who from early on reliably acquire sophisticated sensory-motor capabilities for active exploratory touch and directed manual exploration that associates surfaces and object properties with their spatial locations. This is in stark contrast to robotics. In this field, the relative lack of good real-world interaction models - along with very restricted sensors and a scarcity of suitable training data to leverage machine learning methods - has so far rendered haptic exploration a largely underdeveloped skill. In the present work, we connect recent advances in recurrent models of visual attention with previous insights about the organisation of human haptic search behavior, exploratory procedures and haptic glances for a novel architecture that learns a generative model of haptic exploration in a simulated three-dimensional environment. The proposed algorithm simultaneously optimizes main perception-action loop components: feature extraction, integration of features over time, and the control strategy, while continuously acquiring data online. We perform a multi-module neural network training, including a feature extractor and a recurrent neural network module aiding pose control for storing and combining sequential sensory data. The resulting haptic meta-controller for the rigid $16 times 16$ tactile sensor array moving in a physics-driven simulation environment, called the Haptic Attention Model, performs a sequence of haptic glances, and outputs corresponding force measurements. The resulting method has been successfully tested with four different objects. It achieved results close to $100 %$ while performing object contour exploration that has been optimized for its own sensor morphology.
We investigate the transduction of tactile information during active exploration of finely textured surfaces using a novel tactile sensor mimicking the human fingertip. The sensor has been designed by integrating a linear array of 10 micro-force sens
The sense of touch, being the earliest sensory system to develop in a human body [1], plays a critical part of our daily interaction with the environment. In order to successfully complete a task, many manipulation interactions require incorporating
Artificial touch would seem well-suited for Reinforcement Learning (RL), since both paradigms rely on interaction with an environment. Here we propose a new environment and set of tasks to encourage development of tactile reinforcement learning: lear
Monitoring the state of contact is essential for robotic devices, especially grippers that implement gecko-inspired adhesives where intimate contact is crucial for a firm attachment. However, due to the lack of deformable sensors, few have demonstrat
We present a novel robot end-effector for gripping and haptic exploration. Tactile sensing through suction flow monitoring is applied to a new suction cup design that contains multiple chambers for air flow. Each chamber connects with its own remote