ﻻ يوجد ملخص باللغة العربية
Let $P$ be an $x$-monotone orthogonal polygon with $n$ vertices. We call $P$ a simple histogram if its upper boundary is a single edge; and a double histogram if it has a horizontal chord from the left boundary to the right boundary. Two points $p$ and $q$ in $P$ are co-visible if and only if the (axis-parallel) rectangle spanned by $p$ and $q$ completely lies in $P$. In the $r$-visibility graph $G(P)$ of $P$, we connect two vertices of $P$ with an edge if and only if they are co-visible. We consider routing with preprocessing in $G(P)$. We may preprocess $P$ to obtain a label and a routing table for each vertex of $P$. Then, we must be able to route a packet between any two vertices $s$ and $t$ of $P$, where each step may use only the label of the target node $t$, the routing table and neighborhood of the current node, and the packet header. We present a routing scheme for double histograms that sends any data packet along a path whose length is at most twice the (unweighted) shortest path distance between the endpoints. In our scheme, the labels, routing tables, and headers need $O(log n)$ bits. For the case of simple histograms, we obtain a routing scheme with optimal routing paths, $O(log n)$-bit labels, one-bit routing tables, and no headers.
Online routing in a planar embedded graph is central to a number of fields and has been studied extensively in the literature. For most planar graphs no $O(1)$-competitive online routing algorithm exists. A notable exception is the Delaunay triangula
Let $Vsubsetmathbb{R}^2$ be a set of $n$ sites in the plane. The unit disk graph $DG(V)$ of $V$ is the graph with vertex set $V$ in which two sites $v$ and $w$ are adjacent if and only if their Euclidean distance is at most $1$. We develop a compact
Solomon and Elkin constructed a shortcutting scheme for weighted trees which results in a 1-spanner for the tree metric induced by the input tree. The spanner has logarithmic lightness, logarithmic diameter, a linear number of edges and bounded degre
We consider the problem of routing on a network in the presence of line segment constraints (i.e., obstacles that edges in our network are not allowed to cross). Let $P$ be a set of $n$ points in the plane and let $S$ be a set of non-crossing line se
In this paper we study local routing strategies on geometric graphs. Such strategies use geometric properties of the graph like the coordinates of the current and target nodes to route. Specifically, we study routing strategies in the presence of con