ﻻ يوجد ملخص باللغة العربية
Given an $n$-vertex pseudorandom graph $G$ and an $n$-vertex graph $H$ with maximum degree at most two, we wish to find a copy of $H$ in $G$, i.e. an embedding $varphicolon V(H)to V(G)$ so that $varphi(u)varphi(v)in E(G)$ for all $uvin E(H)$. Particular instances of this problem include finding a triangle-factor and finding a Hamilton cycle in $G$. Here, we provide a deterministic polynomial time algorithm that finds a given $H$ in any suitably pseudorandom graph $G$. The pseudorandom graphs we consider are $(p,lambda)$-bijumbled graphs of minimum degree which is a constant proportion of the average degree, i.e. $Omega(pn)$. A $(p,lambda)$-bijumbled graph is characterised through the discrepancy property: $left|e(A,B)-p|A||B|right |<lambdasqrt{|A||B|}$ for any two sets of vertices $A$ and $B$. Our condition $lambda=O(p^2n/log n)$ on bijumbledness is within a log factor from being tight and provides a positive answer to a recent question of Nenadov. We combine novel variants of the absorption-reservoir method, a powerful tool from extremal graph theory and random graphs. Our approach is based on that of Nenadov (emph{Bulletin of the London Mathematical Society}, to appear) and on ours (arXiv:1806.01676), together with additional ideas and simplifications.
We prove that for any $tge 3$ there exist constants $c>0$ and $n_0$ such that any $d$-regular $n$-vertex graph $G$ with $tmid ngeq n_0$ and second largest eigenvalue in absolute value $lambda$ satisfying $lambdale c d^{t}/n^{t-1}$ contains a $K_t$-fa
We prove that, for any $tge 3$, there exists a constant $c=c(t)>0$ such that any $d$-regular $n$-vertex graph with the second largest eigenvalue in absolute value~$lambda$ satisfying $lambdale c d^{t-1}/n^{t-2}$ contains vertex-disjoint copies of $K_
We consider extremal problems for subgraphs of pseudorandom graphs. For graphs $F$ and $Gamma$ the generalized Turan density $pi_F(Gamma)$ denotes the density of a maximum subgraph of $Gamma$, which contains no copy of~$F$. Extending classical Turan
In 2006, Barat and Thomassen posed the following conjecture: for each tree $T$, there exists a natural number $k_T$ such that, if $G$ is a $k_T$-edge-connected graph and $|E(G)|$ is divisible by $|E(T)|$, then $G$ admits a decomposition into copies o
Let $L$ be subset of ${3,4,dots}$ and let $X_{n,M}^{(L)}$ be the number of cycles belonging to unicyclic components whose length is in $L$ in the random graph $G(n,M)$. We find the limiting distribution of $X_{n,M}^{(L)}$ in the subcritical regime $M