ترغب بنشر مسار تعليمي؟ اضغط هنا

Database of novel magnetic materials for high-performance permanent magnet development

96   0   0.0 ( 0 )
 نشر من قبل Pablo Nieves
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper describes the open Novamag database that has been developed for the design of novel Rare-Earth free/lean permanent magnets. The database software technologies, its friendly graphical user interface, advanced search tools and available data are explained in detail. Following the philosophy and standards of Materials Genome Initiative, it contains significant results of novel magnetic phases with high magnetocrystalline anisotropy obtained by three computational high-throughput screening approaches based on a crystal structure prediction method using an Adaptive Genetic Algorithm, tetragonally distortion of cubic phases and tuning known phases by doping. Additionally, it also includes theoretical and experimental data about fundamental magnetic material properties such as magnetic moments, magnetocrystalline anisotropy energy, exchange parameters, Curie temperature, domain wall width, exchange stiffness, coercivity and maximum energy product, that can be used in the study and design of new promising high-performance Rare-Earth free/lean permanent magnets. The results therein contained might provide some insights into the ongoing debate about the theoretical performance limits beyond Rare-Earth based magnets. Finally, some general strategies are discussed to design possible experimental routes for exploring most promising theoretical novel materials found in the database.



قيم البحث

اقرأ أيضاً

Whether porosity can effectively improve thermoelectric performance is still an open question. Herein we report that thermoelectric performance can be significantly enhanced by creating porosity in n-type Mg3.225Mn0.025Sb1.5Bi0.49Te0.01, with a ZT of ~0.9 at 323 K and ~1.6 at 723 K, making the average ZT much higher for better performance. The large improvement at room temperature is significant considering that such a ZT value is comparable to the best ZT at this temperature in n-type Bi2Te3. The enhancement was mainly from the improved electrical mobility and multi-scale phonon scattering, particularly from the well-dispersed bismuth nano-precipitates in the porous structure. We further extend this approach to other thermoelectric materials such as half-Heuslers Nb0.56V0.24Ti0.2FeSb and Hf0.25Zr0.75NiSn0.99Sb0.01 and Bi0.5Sb1.5Te3 showing similar improvements, further advancing thermoelectric materials for applications.
103 - V.G. Harris , Y. Chen , A. Yang 2009
Cobalt carbide nanoparticles were processed using polyol reduction chemistry that offers high product yields in a cost effective single-step process. Particles are shown to be acicular in morphology and typically assembled as clusters with room tempe rature coercivities greater than 4 kOe and maximum energy products greater than 20 KJ/m3. Consisting of Co3C and Co2C phases, the ratio of phase volume, particle size, and particle morphology all play important roles in determining permanent magnet properties. Further, the acicular particle shape provides an enhancement to the coercivity via dipolar anisotropy energy as well as offering potential for particle alignment in nanocomposite cores. While Curie temperatures are near 510K at temperatures approaching 700 K the carbide powders experience an irreversible dissociation to metallic cobalt and carbon thus limiting operational temperatures to near room temperature.
We propose a new concept of magnetic focusing for targeting and accumulation of functionalized superparamagnetic nanoparticles in living organs through composite configurations of different permanent magnets. The proposed setups fulfill two fundament al requirements for in vivo experiments: 1) reduced size of the magnets to best focusing on small areas representing the targeted organs of mice and rats and 2) maximization of the magnetic driving force acting on the magnetic nanoparticles dispersed in blood. To this aim, several configurations of permanent magnets organized with different degrees of symmetry have been tested. The product B*grad(B) proportional to the magnetic force has been experimentally measured, over a wide area (20x20 mm^2), at a distance corresponding to the hypothetical distance of the mouse organ from the magnets. A non-symmetric configuration of mixed shape permanent magnets resulted in particularly promising to achieve the best performances for further in vivo experiments.
To reduce material and processing costs of commercial permanent magnets and to attempt to fill the empty niche of energy products, 10 - 20 MGOe, between low-flux (ferrites, alnico) and high-flux (Nd2Fe14B- and SmCo5-type) magnets, we report synthesis , structure, magnetic properties and modeling of Ta, Cu and Fe substituted CeCo5. Using a self-flux technique, we grew single crystals of I - Ce15.1Ta1.0Co74.4Cu9.5, II - Ce16.3Ta0.6Co68.9Cu14.2, III - Ce15.7Ta0.6Co67.8Cu15.9, IV - Ce16.3Ta0.3Co61.7Cu21.7 and V - Ce14.3Ta1.0Co62.0Fe12.3Cu10.4. X-ray diffraction analysis (XRD) showed that these materials retain a CaCu5 substructure and incorporate small amounts of Ta in the form of dumb-bells, filling the 2e crystallographic sites within the 1D hexagonal channel with the 1a Ce site, whereas Co, Cu and Fe are statistically distributed among the 2c and 3g crystallographic sites. Scanning electron microscopy, energy dispersive X-ray spectroscopy (SEM-EDS) and scanning transmission electron microscopy (STEM) examinations provided strong evidence of the single-phase nature of the as-grown crystals, even though they readily exhibited significant magnetic coercivitie of ~1.6 - ~1.8 kOe caused by Co-enriched, nano-sized, structural defects and faults that can serve as pinning sites. Formation of the composite crystal during the heat treatment creates a 3D array of extended defects within a primarily single grain single crystal, which greatly improves its magnetic characteristics. Possible causes of the formation of the composite crystal may be associated with Ta atoms leaving matrix interstices at lower temperatures and/or matrix degradation induced by decreased miscibility at lower temperatures. Fe strongly improves both the Curie temperature and magnetization of the system resulting in (BH)max:~13 MGOe at room temperature.
The discoveries of intrinsically magnetic topological materials, including semimetals with a large anomalous Hall effect and axion insulators, have directed fundamental research in solid-state materials. Topological quantum chemistry has enabled the understanding of and the search for paramagnetic topological materials. Using magnetic topological indices obtained from magnetic topological quantum chemistry (MTQC), here we perform a high-throughput search for magnetic topological materials based on first-principles calculations. We use as our starting point the Magnetic Materials Database on the Bilbao Crystallographic Server, which contains more than 549 magnetic compounds with magnetic structures deduced from neutron-scattering experiments, and identify 130 enforced semimetals (for which the band crossings are implied by symmetry eigenvalues), and topological insulators. For each compound, we perform complete electronic structure calculations, which include complete topological phase diagrams using different values of the Hubbard potential. Using a custom code to find the magnetic co-representations of all bands in all magnetic space groups, we generate data to be fed into the algorithm of MTQC to determine the topology of each magnetic material. Several of these materials display previously unknown topological phases, including symmetry-indicated magnetic semimetals, three-dimensional anomalous Hall insulators and higher-order magnetic semimetals. We analyse topological trends in the materials under varying interactions: 60 per cent of the 130 topological materials have topologies sensitive to interactions, and the others have stable topologies under varying interactions. We provide a materials database for future experimental studies and open-source code for diagnosing topologies of magnetic materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا