ﻻ يوجد ملخص باللغة العربية
Residual pump peak in fiber-based supercontinuum, as a general phenomenon, limits its practical application. We report a novel supercontinuum generation (SCG) in a conventional highly nonlinear fiber (HNLF) through multiple coherent pump technique, which eliminates the residual pump peak existed in conventional SCG. The multiple coherent pump technique is realized by double bound-state solitons achieved from a homemade modelocked fiber laser. We further compare the SCGs pumped by conventional bound-state soliton and single soliton. It confirms that the effective elimination of the residual pump peak in supercontinuum owes to higher transferring efficiency of the pump energy to new generated frequencies in the multiple coherent pump scheme. The use of multiple coherent pump scheme, i.e., double bound-state solitons, provides a new, simple and promising method to obtain flat supercontinuum source.
We demonstrate non-adiabatic charge pumping utilizing a sequence of coherent oscillations between a superconducting island and two reservoirs. Our method, based on pulsed quantum state manipulations, allows to speedup charge pumping to a rate which i
High-Q microresonator has been suggested a promising platform for optical frequency comb generation, via dissipative soliton formation. To achieve a higher Q and obtain the necessary anomalous dispersion, $Si_3N_4$ microresonators made of multi-mode
The organic terahertz (THz) generation crystal BNA has recently gained traction as a valuable source to produce broadband THz pulses. Even when pumped with 800-nm light, thin BNA crystals can produce relatively high electric fields with frequency com
High harmonic generation (HHG) is an extreme nonlinear frequency up-conversion process during which extremely short duration optical pulses at very short wavelengths are emitted. A major concern of HHG is the small conversion efficiency at the single
The Bell basis, a set of maximally entangled biphoton state, is a critical prerequisite towards quantum information processing, and many quantum applications have highlighted the requirement for the manipulation of high-dimensional Bell basis. While