ﻻ يوجد ملخص باللغة العربية
High harmonic generation (HHG) is an extreme nonlinear frequency up-conversion process during which extremely short duration optical pulses at very short wavelengths are emitted. A major concern of HHG is the small conversion efficiency at the single emitter level. Thus ensuring that the emission at different locations are emitted in phase is crucial. At high pump intensities it is impossible to phase match the radiation without reverting to ordered modulations of either the medium or the pump field itself, a technique known as Quasi-Phase-Matching (QPM). To date, demonstrated QPM techniques of HHG were usually complicated and/or lacked tunability. Here we demonstrate experimentally a relatively simple, highly and easily tunable QPM technique by using a structured pump beam made of the interference of different spatial optical modes. With this technique we demonstrate on-the-fly, tunable quasi-phase-matching of harmonic orders 25 to 39 with up to 30 fold enhancement of the emission.
A new method to generate and control the amplitude and phase distributions of a optical vortex beam is proposed. By introducing a holographic grating on top of the dielectric waveguide, the free space vortex beam and the in-plane guiding wave can be
The interplay between spin and orbital angular momentum in the up-conversion process allows us to control the macroscopic wave front of high harmonics by manipulating the microscopic polarizations of the driving field. We demonstrate control of orbit
High-harmonic generation (HHG), which is generation of multiple optical harmonic light, is an unconventional nonlinear optical phenomenon beyond perturbation regime. HHG, which was initially observed in gaseous media, has recently been demonstrated i
The extreme nonlinear optical process of high-harmonic generation (HHG) makes it possible to map the properties of a laser beam onto a radiating electron wavefunction, and in turn, onto the emitted x-ray light. Bright HHG beams typically emerge from
Efficient frequency conversion techniques are crucial to the development of plasmonic metasurfaces for information processing and signal modulation. In principle, nanoscale electric-field confinement in nonlinear materials enables higher harmonic con