ﻻ يوجد ملخص باللغة العربية
Cellular-connected unmanned aerial vehicles (UAVs) are recently getting significant attention due to various practical use cases, e.g., surveillance, data gathering, purchase delivery, among other applications. Since UAVs are low power nodes, energy and spectral efficient communication is of paramount importance. To that end, multiple access (MA) schemes can play an important role in achieving high energy efficiency and spectral efficiency. In this work, we introduce rate-splitting MA (RSMA) and non-orthogonal MA (NOMA) schemes in a cellular-connected UAV network. In particular, we investigate the energy efficiency of the RSMA and NOMA schemes in a millimeter wave (mmWave) downlink transmission scenario. Furthermore, we optimize precoding vectors of both the schemes by explicitly taking into account the 3GPP antenna propagation patterns. The numerical results for this realistic transmission scheme indicate that RSMA is superior to NOMA in terms of overall energy efficiency.
This article investigates the energy efficiency issue in non-orthogonal multiple access (NOMA)-enhanced Internet-of-Things (IoT) networks, where a mobile unmanned aerial vehicle (UAV) is exploited as a flying base station to collect data from ground
Integrating unmanned aerial vehicle (UAV) into the existing cellular networks that are delicately designed for terrestrial transmissions faces lots of challenges, in which one of the most striking concerns is how to adopt UAV into the cellular networ
An integrated access and backhaul (IAB) network architecture can enable flexible and fast deployment of next-generation cellular networks. However, mutual interference between access and backhaul links, small inter-site distance and spatial dynamics
This article investigates the cache-enabling unmanned aerial vehicle (UAV) cellular networks with massive access capability supported by non-orthogonal multiple access (NOMA). The delivery of a large volume of multimedia contents for ground users is
Driven by the unprecedented high throughput and low latency requirements in next-generation wireless networks, this paper introduces an artificial intelligence (AI) enabled framework in which unmanned aerial vehicles (UAVs) use non-orthogonal multipl