ﻻ يوجد ملخص باللغة العربية
We prove that the alternating group of a topologically free action of a countably infinite group $Gamma$ on the Cantor set has the property that all of its $ell^2$-Betti numbers vanish and, in the case that $Gamma$ is amenable, is stable in the sense of Jones and Schmidt and has property Gamma (and in particular is inner amenable). We show moreover in the realm of amenable $Gamma$ that there are many such alternating groups which are simple, finitely generated, and C$^*$-simple. The device for establishing nonisomorphism among these examples is a topological version of Austins result on the invariance of measure entropy under bounded orbit equivalence.
We prove several theorems relating amenability of groups in various categories (discrete, definable, topological, automorphism group) to model-theoretic invariants (quotients by connected components, Lascar Galois group, G-compactness, ...). For exam
We prove that $Out(F_N)$ is boundary amenable. This also holds more generally for $Out(G)$, where $G$ is either a toral relatively hyperbolic group or a finitely generated right-angled Artin group. As a consequence, all these groups satisfy the Novikov conjecture on higher signatures.
We show that the universal minimimal proximal flow and the universal minimal strongly proximal flow of a discrete group can be realized as the Stone spaces of translation invariant Boolean algebras of subsets of the group satisfying a higher order no
Let Gamma be a discrete group satisfying the rapid decay property with respect to a length function which is conditionally negative. Then the reduced C*-algebra of Gamma has the metric approximation property. The central point of our proof is an ob
The purpose of this expository article is to revisit the notions of amenability and ergodicity, and to point out that they appear for topological groups that are not necessarily locally compact in articles by Bogolyubov (1939), Fomin (1950), Dixmier (1950), and Rickert (1967).