ترغب بنشر مسار تعليمي؟ اضغط هنا

Synthesis for controllability and observability of logical control networks

78   0   0.0 ( 0 )
 نشر من قبل Kuize Zhang
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Finite-state systems have applications in systems biology, formal verification and synthesis problems of infinite-state (hybrid) systems, etc. As deterministic finite-state systems, logical control networks (LCNs) consist of a finite number of nodes which can be in a finite number of states and update their states. In this paper, we investigate the synthesis problem for controllability and observability of LCNs by state feedback under the semitensor product framework. We show that state feedback can never enforce controllability of an LCN, but sometimes can enforce its observability. We prove that for an LCN $Sig$ and another LCN $Sig$ obtained by feeding a state-feedback controller into $Sig$, (1) if $Sig$ is controllable, then $Sig$ can be either controllable or not; (2) if $Sig$ is not controllable, then $Sig$ is not controllable either; (3) if $Sig$ is observable, then $Sig$ can be either observable or not; (4) if $Sig$ is not observable, $Sig$ can also be observable or not. We also prove that if an unobservable LCN can be synthesized to be observable by state feedback, then it can also be synthesized to be observable by closed-loop state feedback (i.e., state feedback without any input). Furthermore, we give an upper bound for the number of closed-loop state-feedback controllers that are needed to verify whether an unobservable LCN can be synthesized to be observable by state feedback.



قيم البحث

اقرأ أيضاً

Given a linear control system in a Hilbert space with a bounded control operator, we establish a characterization of exponential stabilizability in terms of an observability inequality. Such dual characterizations are well known for exact (null) cont rollability. Our approach exploits classical Fenchel duality arguments and, in turn, leads to characterizations in terms of observability inequalities of approximately null controllability and of $alpha$-null controllability. We comment on the relationships between those various concepts, at the light of the observability inequalities that characterize them.
114 - Kuize Zhang 2017
It is known that determining the observability and reconstructibility of Boolean control networks (BCNs) are both NP-hard in the number of nodes of BCNs. In this paper, we use the aggregation method to overcome the challenging complexity problem in v erifying the observability and reconstructibility of large-scale BCNs with special structures in some sense. First, we define a special class of aggregations that are compatible with observability and reconstructibility (i.e, observability and reconstructibility are meaningful for each part of the aggregation), and show that even for this special class of aggregations, the whole BCN being observable/reconstructible does not imply the resulting sub-BCNs being observable/reconstructible, and vice versa. Second, for acyclic aggregations in this special class, we prove that all resulting sub-BCNs being observable/reconstructible implies the whole BCN being observable/reconstructible. Third, we show that finding such acyclic special aggregations with sufficiently small parts can tremendously reduce computational complexity. Finally, we use the BCN T-cell receptor kinetics model to illustrate the efficiency of these results. In addition, the special aggregation method characterized in this paper can also be used to deal with the observability/reconstructibility of large-scale linear (special classes of nonlinear) control systems with special network structures.
Observability and controllability are essential concepts to the design of predictive observer models and feedback controllers of networked systems. For example, noncontrollable mathematical models of real systems have subspaces that influence model b ehavior, but cannot be controlled by an input. Such subspaces can be difficult to determine in complex nonlinear networks. Since almost all of the present theory was developed for linear networks without symmetries, here we present a numerical and group representational framework, to quantify the observability and controllability of nonlinear networks with explicit symmetries that shows the connection between symmetries and nonlinear measures of observability and controllability. We numerically observe and theoretically predict that not all symmetries have the same effect on network observation and control. Our analysis shows that the presence of symmetry in a network may decrease observability and controllability, although networks containing only rotational symmetries remain controllable and observable. These results alter our view of the nature of observability and controllability in complex networks, change our understanding of structural controllability, and affect the design of mathematical models to observe and control such networks.
In this paper we present necessary and sufficient conditions to guarantee the existence of invariant cones, for semigroup actions, in the space of the $k$-fold exterior product. As consequence we establish a necessary and sufficient condition for con trollability of a class of bilinear control systems.
The existing results on controllability of multi-agents networks are mostly based on homogeneous nodes. This paper focuses on controllability of heterogeneous multi-agent networks, where the agents are modeled as two types. One type is that the agent s are of the same high-order dynamics, and the interconnection topologies of the information flow in different orders are supposed to be different. It is proved that a heterogeneous-topology network is controllable if and only if the first-order information topology is leader-follower connected, and there exists a Laplacian matrix, which is a linear combination of the Laplacian matrices of each order information, whose corresponding topology is controllable. The other type is that the agents are of generic linear dynamics, and the dynamics are supposed to be heterogeneous. A necessary and sufficient condition for controllability of heterogeneous-dynamic networks is that each agent contains a controllable dynamic part, and the interconnection topology of the network is leader-follower connected. If some dynamics of the agents are not controllable, the controllability between the agents and the whole network is also studied by introducing the concept of eigenvector-uncontrollable. Different illustrative examples are provided to demonstrate the effectiveness of the theoretical results in this paper.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا