ﻻ يوجد ملخص باللغة العربية
Finite-state systems have applications in systems biology, formal verification and synthesis problems of infinite-state (hybrid) systems, etc. As deterministic finite-state systems, logical control networks (LCNs) consist of a finite number of nodes which can be in a finite number of states and update their states. In this paper, we investigate the synthesis problem for controllability and observability of LCNs by state feedback under the semitensor product framework. We show that state feedback can never enforce controllability of an LCN, but sometimes can enforce its observability. We prove that for an LCN $Sig$ and another LCN $Sig$ obtained by feeding a state-feedback controller into $Sig$, (1) if $Sig$ is controllable, then $Sig$ can be either controllable or not; (2) if $Sig$ is not controllable, then $Sig$ is not controllable either; (3) if $Sig$ is observable, then $Sig$ can be either observable or not; (4) if $Sig$ is not observable, $Sig$ can also be observable or not. We also prove that if an unobservable LCN can be synthesized to be observable by state feedback, then it can also be synthesized to be observable by closed-loop state feedback (i.e., state feedback without any input). Furthermore, we give an upper bound for the number of closed-loop state-feedback controllers that are needed to verify whether an unobservable LCN can be synthesized to be observable by state feedback.
Given a linear control system in a Hilbert space with a bounded control operator, we establish a characterization of exponential stabilizability in terms of an observability inequality. Such dual characterizations are well known for exact (null) cont
It is known that determining the observability and reconstructibility of Boolean control networks (BCNs) are both NP-hard in the number of nodes of BCNs. In this paper, we use the aggregation method to overcome the challenging complexity problem in v
Observability and controllability are essential concepts to the design of predictive observer models and feedback controllers of networked systems. For example, noncontrollable mathematical models of real systems have subspaces that influence model b
In this paper we present necessary and sufficient conditions to guarantee the existence of invariant cones, for semigroup actions, in the space of the $k$-fold exterior product. As consequence we establish a necessary and sufficient condition for con
The existing results on controllability of multi-agents networks are mostly based on homogeneous nodes. This paper focuses on controllability of heterogeneous multi-agent networks, where the agents are modeled as two types. One type is that the agent