ﻻ يوجد ملخص باللغة العربية
While the behavior of vesicles in thermodynamic equilibrium has been studied extensively, how active forces control vesicle shape transformations is not understood. Here, we combine theory and simulations to study the shape behavior of vesicles containing active Brownian particles. We show that the combination of active forces, dimensionality and membrane bending free energy creates a plethora of novel phase transitions. At low swim pressure, the vesicle exhibits a discontinuous transition from a spherical to a prolate shape, which has no counterpart in two dimensions. At high swim pressure it exhibits stochastic spatio-temporal oscillations. Our work helps to understand and control the shape dynamics of membranes in active-matter systems.
Soft bodies flowing in a channel often exhibit parachute-like shapes usually attributed to an increase of hydrodynamic constraint (viscous stress and/or confinement). We show that the presence of a fluid membrane leads to the reverse phenomenon and b
Lipid vesicles composed of a mixture of two types of lipids are studied by intensive Monte-Carlo numerical simulations. The coupling between the local composition and the membrane shape is induced by two different spontaneous curvatures of the compon
We investigate the swim pressure exerted by non-chiral and chiral active particles on convex or concave circular boundaries. Active particles are modeled as non-interacting and non-aligning self-propelled Brownian particles. The convex and concave ci
The conformation and scaling properties of self-avoiding fluid vesicles with zero extrinsic bending rigidity subject to an internal pressure increment $Delta p>0$ are studied using Monte Carlo methods and scaling arguments. With increasing pressure,
Flexible ferromagnetic rings are spin-chain magnets, in which the magnetic and mechanical subsystems are coupled. The coupling is achieved through the tangentially oriented anisotropy axis. The possibility to operate the mechanics of the nanomagnets