ﻻ يوجد ملخص باللغة العربية
We consider two quantum phase spaces which can be described by two Hopf algebroids linked with the well-known $theta_{mu u }$-deformed $D=4$ Poincare-Hopf algebra $mathbb{H}$. The first algebroid describes $theta_{mu u }$-deformed relativistic phase space with canonical NC space-time (constant $theta_{mu u }$ parameters) and the second one incorporates dual to $mathbb{H}$ quantum $theta_{mu u }$-deformed Poincare-Hopf group algebra $mathbb{G}$, which contains noncommutative space-time translations given by $Lambda $-dependent $Theta_{mu u }$ parameters ($% Lambda $ $equiv Lambda_{mu u }$ parametrize classical Lorentz group). The canonical $theta_{mu u }$-deformed space-time algebra and its quantum phase space extension is covariant under the quantum Poincare transformations described by $mathbb{G}$. We will also comment on the use of Hopf algebroids for the description of multiparticle structures in quantum phase spaces.
We consider the general D=4 (10+10)-dimensional kappa-deformed quantum phase space as given by Heisenberg double mathcal{H} of D=4 kappa-deformed Poincare-Hopf algebra H. The standard (4+4) -dimensional kappa - deformed covariant quantum phase space
We consider new Abelian twists of Poincare algebra describing non-symmetric generalization of the ones given in [1], which lead to the class of Lie-deformed quantum Minkowski spaces. We apply corresponding twist quantization in two ways: as generatin
We consider the generalized (10+10)-dimensional D=4 quantum phase spaces containing translational and Lorentz spin sectors associated with the dual pair of twist-quantized Poincare Hopf algebra $mathbb{H}$ and quantum Poincare Hopf group $widehat{mat
The Minkowski spacetime quantum Clifford algebra structure associated with the conformal group and the Clifford-Hopf alternative k-deformed quantum Poincare algebra is investigated in the Atiyah-Bott-Shapiro mod 8 theorem context. The resulting algeb
The classical $r$-matrix for $N=1$ superPoincar{e} algebra, given by Lukierski, Nowicki and Sobczyk is used to describe the graded Poisson structure on the $N=1$ Poincar{e} supergroup. The standard correspondence principle between the even (odd) Pois