ترغب بنشر مسار تعليمي؟ اضغط هنا

k-deformed Poincare algebras and quantum Clifford-Hopf algebras

159   0   0.0 ( 0 )
 نشر من قبل Roldao da Rocha
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Minkowski spacetime quantum Clifford algebra structure associated with the conformal group and the Clifford-Hopf alternative k-deformed quantum Poincare algebra is investigated in the Atiyah-Bott-Shapiro mod 8 theorem context. The resulting algebra is equivalent to the deformed anti-de Sitter algebra U_q(so(3,2)), when the associated Clifford-Hopf algebra is taken into account, together with the associated quantum Clifford algebra and a (not braided) deformation of the periodicity Atiyah-Bott-Shapiro theorem.



قيم البحث

اقرأ أيضاً

119 - G. H. E. Duchamp 2009
This paper provides motivation as well as a method of construction for Hopf algebras, starting from an associative algebra. The dualization technique involved relies heavily on the use of Sweedlers dual.
Gauged PT quantum mechanics (PTQM) and corresponding Krein space setups are studied. For models with constant non-Abelian gauge potentials and extended parity
We present a short review of the action and coaction of Hopf algebras on Clifford algebras as an introduction to physically meaningful examples. Some q-deformed Clifford algebras are studied from this context and conclusions are derived.
98 - Shuai Hou , Yunhe Sheng 2021
In this paper, first we introduce the notion of a Reynolds operator on an $n$-Lie algebra and illustrate the relationship between Reynolds operators and derivations on an $n$-Lie algebra. We give the cohomology theory of Reynolds operators on an $n$- Lie algebra and study infinitesimal deformations of Reynolds operators using the second cohomology group. Then we introduce the notion of NS-$n$-Lie algebras, which are generalizations of both $n$-Lie algebras and $n$-pre-Lie algebras. We show that an NS-$n$-Lie algebra gives rise to an $n$-Lie algebra together with a representation on itself. Reynolds operators and Nijenhuis operators on an $n$-Lie algebra naturally induce NS-$n$-Lie algebra structures. Finally, we construct Reynolds $(n+1)$-Lie algebras and Reynolds $3$-Lie algebras from Reynolds $n$-Lie algebras and Reynolds commutative associative algebras respectively.
437 - C. Briot , E. Ragoucy 2013
We present a connection between W-algebras and Yangians, in the case of gl(N) algebras, as well as for twisted Yangians and/or super-Yangians. This connection allows to construct an R-matrix for the W-algebras, and to classify their finite-dimensiona l irreducible representations. We illustrate it in the framework of nonlinear Schroedinger equation in 1+1 dimension.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا