ﻻ يوجد ملخص باللغة العربية
The classic Fatou lemma states that the lower limit of a sequence of integrals of functions is greater or equal than the integral of the lower limit. It is known that Fatous lemma for a sequence of weakly converging measures states a weaker inequality because the integral of the lower limit is replaced with the integral of the lower limit in two parameters, where the second parameter is the argument of the functions. This paper provides sufficient conditions when Fatous lemma holds in its classic form for a sequence of weakly converging measures. The functions can take both positive and negative values. The paper also provides similar results for sequences of setwise converging measures. It also provides Lebesgues and monotone convergence theorems for sequences of weakly and setwise converging measures. The obtained results are used to prove broad sufficient conditions for the validity of optimality equations for average-cost Markov decision processes.
We study functional inequalities (Poincare, Cheeger, log-Sobolev) for probability measures obtained as perturbations. Several explicit results for general measures as well as log-concave distributions are given.The initial goal of this work was to ob
We first develop a theory of conditional expectations for random variables with values in a complete metric space $M$ equipped with a contractive barycentric map $beta$, and then give convergence theorems for martingales of $beta$-conditional expecta
We extend Hoeffdings lemma to general-state-space and not necessarily reversible Markov chains. Let ${X_i}_{i ge 1}$ be a stationary Markov chain with invariant measure $pi$ and absolute spectral gap $1-lambda$, where $lambda$ is defined as the opera
The risk of extreme environmental events is of great importance for both the authorities and the insurance industry. This paper concerns risk measures in a spatial setting, in order to introduce the spatial features of damages stemming from environme
We prove the Zabreikos lemma in 2-Banach spaces. As an application we shall prove a version of the closed graph theorem and open mapping theorem.