ترغب بنشر مسار تعليمي؟ اضغط هنا

Uniform-in-Time Weak Error Analysis for Stochastic Gradient Descent Algorithms via Diffusion Approximation

108   0   0.0 ( 0 )
 نشر من قبل Tingran Gao
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Diffusion approximation provides weak approximation for stochastic gradient descent algorithms in a finite time horizon. In this paper, we introduce new tools motivated by the backward error analysis of numerical stochastic differential equations into the theoretical framework of diffusion approximation, extending the validity of the weak approximation from finite to infinite time horizon. The new techniques developed in this paper enable us to characterize the asymptotic behavior of constant-step-size SGD algorithms for strongly convex objective functions, a goal previously unreachable within the diffusion approximation framework. Our analysis builds upon a truncated formal power expansion of the solution of a stochastic modified equation arising from diffusion approximation, where the main technical ingredient is a uniform-in-time weak error bound controlling the long-term behavior of the expansion coefficient functions near the global minimum. We expect these new techniques to greatly expand the range of applicability of diffusion approximation to cover wider and deeper aspects of stochastic optimization algorithms in data science.



قيم البحث

اقرأ أيضاً

Motivated by the high-frequency data streams continuously generated, real-time learning is becoming increasingly important. These data streams should be processed sequentially with the property that the stream may change over time. In this streaming setting, we propose techniques for minimizing a convex objective through unbiased estimates of its gradients, commonly referred to as stochastic approximation problems. Our methods rely on stochastic approximation algorithms due to their computationally advantage as they only use the previous iterate as a parameter estimate. The reasoning includes iterate averaging that guarantees optimal statistical efficiency under classical conditions. Our non-asymptotic analysis shows accelerated convergence by selecting the learning rate according to the expected data streams. We show that the average estimate converges optimally and robustly to any data stream rate. In addition, noise reduction can be achieved by processing the data in a specific pattern, which is advantageous for large-scale machine learning. These theoretical results are illustrated for various data streams, showing the effectiveness of the proposed algorithms.
117 - Yunwen Lei , Ting Hu , Guiying Li 2019
Stochastic gradient descent (SGD) is a popular and efficient method with wide applications in training deep neural nets and other nonconvex models. While the behavior of SGD is well understood in the convex learning setting, the existing theoretical results for SGD applied to nonconvex objective functions are far from mature. For example, existing results require to impose a nontrivial assumption on the uniform boundedness of gradients for all iterates encountered in the learning process, which is hard to verify in practical implementations. In this paper, we establish a rigorous theoretical foundation for SGD in nonconvex learning by showing that this boundedness assumption can be removed without affecting convergence rates. In particular, we establish sufficient conditions for almost sure convergence as well as optimal convergence rates for SGD applied to both general nonconvex objective functions and gradient-dominated objective functions. A linear convergence is further derived in the case with zero variances.
88 - Jie Chen , Ronny Luss 2018
Stochastic gradient descent (SGD), which dates back to the 1950s, is one of the most popular and effective approaches for performing stochastic optimization. Research on SGD resurged recently in machine learning for optimizing convex loss functions a nd training nonconvex deep neural networks. The theory assumes that one can easily compute an unbiased gradient estimator, which is usually the case due to the sample average nature of empirical risk minimization. There exist, however, many scenarios (e.g., graphs) where an unbiased estimator may be as expensive to compute as the full gradient because training examples are interconnected. Recently, Chen et al. (2018) proposed using a consistent gradient estimator as an economic alternative. Encouraged by empirical success, we show, in a general setting, that consistent estimators result in the same convergence behavior as do unbiased ones. Our analysis covers strongly convex, convex, and nonconvex objectives. We verify the results with illustrative experiments on synthetic and real-world data. This work opens several new research directions, including the development of more efficient SGD updates with consistent estimators and the design of efficient training algorithms for large-scale graphs.
The need for fast and robust optimization algorithms are of critical importance in all areas of machine learning. This paper treats the task of designing optimization algorithms as an optimal control problem. Using regret as a metric for an algorithm s performance, we study the existence, uniqueness and consistency of regret-optimal algorithms. By providing first-order optimality conditions for the control problem, we show that regret-optimal algorithms must satisfy a specific structure in their dynamics which we show is equivalent to performing dual-preconditioned gradient descent on the value function generated by its regret. Using these optimal dynamics, we provide bounds on their rates of convergence to solutions of convex optimization problems. Though closed-form optimal dynamics cannot be obtained in general, we present fast numerical methods for approximating them, generating optimization algorithms which directly optimize their long-term regret. Lastly, these are benchmarked against commonly used optimization algorithms to demonstrate their effectiveness.
Independent component analysis (ICA) has been a popular dimension reduction tool in statistical machine learning and signal processing. In this paper, we present a convergence analysis for an online tensorial ICA algorithm, by viewing the problem as a nonconvex stochastic approximation problem. For estimating one component, we provide a dynamics-based analysis to prove that our online tensorial ICA algorithm with a specific choice of stepsize achieves a sharp finite-sample error bound. In particular, under a mild assumption on the data-generating distribution and a scaling condition such that $d^4/T$ is sufficiently small up to a polylogarithmic factor of data dimension $d$ and sample size $T$, a sharp finite-sample error bound of $tilde{O}(sqrt{d/T})$ can be obtained.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا