ترغب بنشر مسار تعليمي؟ اضغط هنا

A discontinuous Galerkin scheme for full-potential electronic structure calculations

125   0   0.0 ( 0 )
 نشر من قبل Xiaoxu Li
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we construct an efficient numerical scheme for full-potential electronic structure calculations of periodic systems. In this scheme, the computational domain is decomposed into a set of atomic spheres and an interstitial region, and different basis functions are used in different regions: radial basis functions times spherical harmonics in the atomic spheres and plane waves in the interstitial region. These parts are then patched together by discontinuous Galerkin (DG) method. Our scheme has the same philosophy as the widely used (L)APW methods in materials science, but possesses systematically spectral convergence rate. We provide a rigorous a priori error analysis of the DG approximations for the linear eigenvalue problems, and present some numerical simulations in electronic structure calculations.



قيم البحث

اقرأ أيضاً

We present the recent development of hybridizable and embedded discontinuous Galerkin (DG) methods for wave propagation problems in fluids, solids, and electromagnetism. In each of these areas, we describe the methods, discuss their main features, di splay numerical results to illustrate their performance, and conclude with bibliography notes. The main ingredients in devising these DG methods are (i) a local Galerkin projection of the underlying partial differential equations at the element level onto spaces of polynomials of degree k to parametrize the numerical solution in terms of the numerical trace; (ii) a judicious choice of the numerical flux to provide stability and consistency; and (iii) a global jump condition that enforces the continuity of the numerical flux to obtain a global system in terms of the numerical trace. These DG methods are termed hybridized DG methods, because they are amenable to hybridization (static condensation) and hence to more efficient implementations. They share many common advantages of DG methods and possess some unique features that make them well-suited to wave propagation problems.
Discontinuous Galerkin (DG) methods are extensions of the usual Galerkin finite element methods. Although there are vast amount of studies on DG methods, most of them have assumed shape-regularity conditions on meshes for both theoretical error analy sis and practical computations. In this paper, we present a new symmetric interior penalty DG scheme with a modified penalty term. We show that, without imposing the shape-regularity condition on the meshes, the new DG scheme inherits all of the good properties of standard DG methods, and is thus robust on anisotropic meshes. Numerical experiments confirm the theoretical error estimates obtained.
The paper proposes a scheme by combining the Runge-Kutta discontinuous Galerkin method with a {delta}-mapping algorithm for solving hyperbolic conservation laws with discontinuous fluxes. This hybrid scheme is particularly applied to nonlinear elasti city in heterogeneous media and multi-class traffic flow with inhomogeneous road conditions. Numerical examples indicate the schemes efficiency in resolving complex waves of the two systems. Moreover, the discussion implies that the so-called {delta}-mapping algorithm can also be combined with any other classical methods for solving similar problems in general.
We present a discontinuous Galerkin internal-penalty scheme that is applicable to a large class of linear and non-linear elliptic partial differential equations. The scheme constitutes the foundation of the elliptic solver for the SpECTRE numerical r elativity code. As such it can accommodate (but is not limited to) elliptic problems in linear elasticity, general relativity and hydrodynamics, including problems formulated on a curved manifold. We provide practical instructions that make the scheme functional in a production code, such as instructions for imposing a range of boundary conditions, for implementing the scheme on curved and non-conforming meshes and for ensuring the scheme is compact and symmetric so it may be solved more efficiently. We report on the accuracy of the scheme for a suite of numerical test problems.
In this paper, we develop a new mass conservative numerical scheme for the simulations of a class of fluid-structure interaction problems. We will use the immersed boundary method to model the fluid-structure interaction, while the fluid flow is gove rned by the incompressible Navier-Stokes equations. The immersed boundary method is proven to be a successful scheme to model fluid-structure interactions. To ensure mass conservation, we will use the staggered discontinuous Galerkin method to discretize the incompressible Navier-Stokes equations. The staggered discontinuous Galerkin method is able to preserve the skew-symmetry of the convection term. In addition, by using a local postprocessing technique, the weakly divergence free velocity can be used to compute a new postprocessed velocity, which is exactly divergence free and has a superconvergence property. This strongly divergence free velocity field is the key to the mass conservation. Furthermore, energy stability is improved by the skew-symmetric discretization of the convection term. We will present several numerical results to show the performance of the method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا