ترغب بنشر مسار تعليمي؟ اضغط هنا

Revealing the Nature and Location of High Energy Emission in the Candidate Binary SMBH System OJ 287

92   0   0.0 ( 0 )
 نشر من قبل Pankaj Kushwaha
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Pankaj Kushwaha




اسأل ChatGPT حول البحث

The latest flare of the regular $sim$ 12 years quasi-periodic optical outbursts in the binary SMBH candidate system OJ 287 occurred in December 2015. Following this, the source has exhibited enhanced multi-wavelength (MW) variability in spectral, temporal and polarization domains with new features never seen before. Our MW investigation show that the overall MW variability can be divided into two-phase, (i) November 2015 -- May 2016 with variability from near-infrared (NIR) to Fermi-LAT $rm gamma$-ray energies (0.1 -- 300 GeV), and (ii) September 2016 -- July 2017 with intense NIR to X-ray variability but without any activity in the Fermi-LAT band, and the very first detection at very high energies (VHEs, E $>$ 100 GeV) by VERITAS. The broadband SEDs during the first phase show a thermal bump in the NIR-optical region and a hardening in the $rm gamma$-ray spectra with a shift in its peak. The thermal bump like feature is consistent with the description of the standard accretion-disk associated with the primary SMBH of mass $sim 1.8times10^{10} M_odot$ while the $rm gamma$-ray emission can be naturally reproduced by inverse Compton scattering of photons from the broad line region which has been seen during the close encounter duration of the binary SMBHs, thereby suggesting a sub-parsec scale origin. The SEDs during the second phase (VHE detection) is a mixture of typical OJ 287 SED with hardened $rm gamma$-ray spectra and an HBL SED and can be explained in a two-zone model, one located at sub-parsec scales and other at parsec scales. During both the phases, the MW variability is simultaneous and almost always accompanied by changes in the polarization properties, exhibiting random and systematic variations, suggesting a strong role of magnetic field and turbulence.



قيم البحث

اقرأ أيضاً

88 - S. Komossa , S. Ciprini , L. Dey 2021
Supermassive binary black holes (SMBBHs) are laboratories par excellence for relativistic effects, including precession effects in the Kerr metric and the emission of gravitational waves. Binaries form in the course of galaxy mergers, and are a key c omponent in our understanding of galaxy evolution. Dedicated searches for SMBBHs in all stages of their evolution are therefore ongoing and many systems have been discovered in recent years. Here we provide a review of the status of observations with a focus on the multiwavelength detection methods and the underlying physics. Finally, we highlight our ongoing, dedicated multiwavelength program MOMO (for Multiwavelength Observations and Modelling of OJ 287). OJ 287 is one of the best candidates to date for hosting a sub-parsec SMBBH. The MOMO program carries out a dense monitoring at >13 frequencies from radio to X-rays and especially with Swift since 2015. Results so far included: (1) The detection of two major UV-X-ray outbursts with Swift in 2016/17 and 2020; exhibiting softer-when-brighter behaviour. The non-thermal nature of the outbursts was clearly established and shown to be synchrotron radiation. (2) Swift multi-band dense coverage and XMM-Newton spectroscopy during EHT campaigns caught OJ 287 at an intermediate flux level with synchrotron and IC spectral components. (3) Discovery of a remarkable, giant soft X-ray excess with XMM and NuSTAR during the 2020 outburst. (4) Spectral evidence (at 2sigma) for a relativistically shifted iron absorption line in 2020. (5) The non-thermal 2020 outburst is consistent with an after-flare predicted by the SMBBH model of OJ 287.
We present a comprehensive analysis of all XMM-Newton spectra of OJ 287 spanning 15 years of X-ray spectroscopy of this bright blazar. We also report the latest results from our dedicated Swift UVOT and XRT monitoring of OJ 287 which started in 2015, along with all earlier public Swift data since 2005. During this time interval, OJ 287 was caught in extreme minima and outburst states. Its X-ray spectrum is highly variable and encompasses all states seen in blazars from very flat to exceptionally steep. The spectrum can be decomposed into three spectral components: Inverse Compton (IC) emission dominant at low-states, super-soft synchrotron emission which becomes increasingly dominant as OJ 287 brightens, and an intermediately-soft (Gamma_x=2.2) additional component seen at outburst. This last component extends beyond 10 keV and plausibly represents either a second synchrotron/IC component and/or a temporary disk corona of the primary supermassive black hole (SMBH). Our 2018 XMM-Newton observation, quasi-simultaneous with the Event Horizon Telescope observation of OJ 287, is well described by a two-component model with a hard IC component of Gamma_x=1.5 and a soft synchrotron component. Low-state spectra limit any long-lived accretion disk/corona contribution in X-rays to a very low value of L_x/L_Edd < 5.6 times 10^(-4) (for M_(BH, primary) = 1.8 times 10^10 M_sun). Some implications for the binary SMBH model of OJ 287 are discussed.
The broadband spectrum of a BL Lac object, OJ 287, from radio to $gamma$-rays obtained during a major $gamma$-ray flare detected by emph{Fermi} in 2009 are studied to understand the high energy emission mechanism during this episode. Using a simple o ne-zone leptonic model, incorporating synchrotron and inverse Compton emission processes, we show that the explanation of high energy emission from X-rays to $gamma$-rays, by considering a single emission mechanism, namely, synchrotron self-Compton (SSC) or external Compton (EC) requires unlikely physical conditions. However, a combination of both SSC and EC mechanisms can reproduce the observed high energy spectrum satisfactorily. Using these emission mechanisms we extract the physical parameters governing the source and its environment. Our study suggests that the emission region of OJ 287 is surrounded by a warm infrared (IR) emitting region of $sim 250 , K$. Assuming this region as a spherical cloud illuminated by an accretion disk, we obtain the location of the emission region to be $sim 9 pc$. This supports the claim that the $gamma$-ray emission from OJ 287 during the 2009 flare arises from a location far away from the central engine as deduced from millimeter-gamma ray correlation study and very long baseline array images.
The Gamma-ray BL Lac object OJ 287 is known to exhibit inner-parsec jet-wobbling, high degrees of variability at all wavelengths and quasi-stationary features including an apparent (~100 deg) position angle change in projection on the sky plane. Sub- 50 micro-arcsecond resolution 86 GHz observations with the global mm-VLBI array (GMVA) supplement ongoing multi-frequency VLBI blazar monitoring at lower frequencies. Using these maps together with cm/mm total intensity and Gamma-ray observations from Fermi/LAT from 2008-2014, we aimed to determine the location of Gamma-ray emission and to explain the inner-mas structural changes. Observations with the GMVA offer approximately double the angular resolution compared with 43 GHz VLBA observations and allow us to observe above the synchrotron self-absorption peak frequency. The jet was spectrally decomposed at multiple locations along the jet. From this we derived estimates of the magnetic field. How the field decreases down the jet allowed an estimate of the distance to the jet apex and an estimate of the magnetic field strength at the jet apex and in the broad line region. Combined with accurate kinematics we attempt to locate the site of Gamma-ray activity, radio flares and spectral changes. Strong Gamma-ray flares appeared to originate from either the core region, a downstream stationary feature, or both, with Gamma-ray activity significantly correlated with radio flaring in the downstream quasi-stationary feature. Magnetic field estimates were determined at multiple locations along the jet, with the magnetic field found to be >1.6 G in the core and >0.4 G in the downstream quasi-stationary feature. We therefore found upper limits on the location of the core as >6.0 pc from the jet apex and determined an upper limit on the magnetic field near the jet base of the order of thousands of Gauss.
We analyze the linear polarization of the relativistic jet in BL Lacertae object OJ~287 as revealed by multi-epoch Very Long Baseline Array (VLBA) images at 43 GHz and monitoring observations at optical bands. The electric-vector position angle (EVPA ) of the optical polarization matches that at 43 GHz at locations that are often in the compact millimeter-wave core or, at other epochs, coincident with a bright, quasi-stationary emission feature $sim0.2$~milliarcsec ($sim$0.9~pc projected on the sky) downstream from the core. This implies that electrons with high enough energies to emit optical synchrotron and $gamma$-ray inverse Compton radiation are accelerated both in the core and at the downstream feature, the latter of which lies $geq10$~pc from the central engine. The polarization vector in the stationary feature is nearly parallel to the jet axis, as expected for a conical standing shock capable of accelerating electrons to GeV energies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا