ترغب بنشر مسار تعليمي؟ اضغط هنا

Detection of non-thermal hard X-ray emission from the Fermi bubble in an external galaxy

113   0   0.0 ( 0 )
 نشر من قبل Jiang-Tao Li Dr.
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report new Chandra hard X-ray ($>2rm~keV$) and JVLA C-band observations of the nuclear superbubble of NGC 3079, an analog of the Fermi bubble in our Milky Way. We detect extended hard X-ray emission on the SW side of the galactic nucleus with coherent multi-wavelength features in radio, H$alpha$, and soft X-ray. The hard X-ray feature has a cone shape with possibly a weak cap, forming a bubble-like structure with a diameter of $sim1.1rm~kpc$. A similar extended feature, however, is not detected on the NE side, which is brighter in all other wavelengths such as radio, H$alpha$, and soft X-ray. Scattered photons from the nuclear region or other nearby point-like X-ray bright sources, inverse Compton emission from cosmic ray electrons via interaction with the cosmic microwave background, or any individually faint stellar X-ray source populations, cannot explain the extended hard X-ray emission on the SW side and the strongly NE/SW asymmetry. A synchrotron emission model, plus a thermal component accounting for the excess at $sim1rm~keV$, can well characterize the broadband radio/hard X-ray spectra. The broadband synchrotron spectra do not show any significant cutoff, and even possibly slightly flatten at higher energy. This rules out a loss-limited scenario in the acceleration of the cosmic ray electrons in or around this superbubble. As the first detection of kpc-scale extended hard X-ray emission associated with a galactic nuclear superbubble, the spatial and spectral properties of the multi-wavelength emissions indicate that the cosmic ray leptons responsible for the broad-band synchrotron emission from the SW bubble must be accelerated in situ, instead of transported from the nuclear region of the galaxy.



قيم البحث

اقرأ أيضاً

We analyse new results of Chandra and Suzaku which found a flux of hard X-ray emission from the compact region around Sgr A$^ast$ (r ~ 100 pc). We suppose that this emission is generated by accretion processes onto the central supermassive blackhole when an unbounded part of captured stars obtains an additional momentum. As a result a flux of subrelativistic protons is generated near the Galactic center which heats the background plasma up to temperatures about 6-10 keV and produces by inverse bremsstrahlung a flux of non-thermal X-ray emission in the energy range above 10 keV.
Runaway stars produce shocks when passing through interstellar medium at supersonic velocities. Bow shocks have been detected in the mid-infrared for several high-mass runaway stars and in radio waves for one star. Theoretical models predict the prod uction of high-energy photons by non-thermal radiative processes in a number sufficiently large to be detected in X-rays. To date, no stellar bow shock has been detected at such energies. We present the first detection of X-ray emission from a bow shock produced by a runaway star. The star is AE Aur, which was likely expelled from its birthplace by the encounter of two massive binary systems and now is passing through the dense nebula IC 405. The X-ray emission from the bow shock is detected at 30 to the northeast of the star, coinciding with an enhancement in the density of the nebula. From the analysis of the observed X-ray spectrum of the source and our theoretical emission model, we confirm that the X-ray emission is produced mainly by inverse Compton upscattering of infrared photons from dust in the shock front.
We report NuSTAR observations of a sample of six X-ray weak broad absorption line (BAL) quasars. These targets, at z=0.148-1.223, are among the optically brightest and most luminous BAL quasars known at z<1.3. However, their rest-frame 2 keV luminosi ties are 14 to >330 times weaker than expected for typical quasars. Our results from a pilot NuSTAR study of two low-redshift BAL quasars, a Chandra stacking analysis of a sample of high-redshift BAL quasars, and a NuSTAR spectral analysis of the local BAL quasar Mrk 231 have already suggested the existence of intrinsically X-ray weak BAL quasars, i.e., quasars not emitting X-rays at the level expected from their optical/UV emission. The aim of the current program is to extend the search for such extraordinary objects. Three of the six new targets are weakly detected by NuSTAR with <45 counts in the 3-24 keV band, and the other three are not detected. The hard X-ray (8-24 keV) weakness observed by NuSTAR requires Compton-thick absorption if these objects have nominal underlying X-ray emission. However, a soft stacked effective photon index ({Gamma}~1.8) for this sample disfavors Compton-thick absorption in general. The uniform hard X-ray weakness observed by NuSTAR for this and the pilot samples selected with <10 keV weakness also suggests that the X-ray weakness is intrinsic in at least some of the targets. We conclude that the NuSTAR observations have likely discovered a significant population (>33%) of intrinsically X-ray weak objects among the BAL quasars with significantly weak <10 keV emission. We suggest that intrinsically X-ray weak quasars might be preferentially observed as BAL quasars.
125 - Roland M. Crocker 2014
I review our current state of knowledge about non-thermal radiation from the Galactic Centre (GC) and Inner Galaxy. Definitionally, the Galactic nucleus is at the bottom of the Galaxys gravitational well, rendering it a promising region to seek the s ignatures of dark matter decay or annihilation. It also hosts, however, the Milky Ways resident supermassive black hole and up to 10% of current massive star formation in the Galaxy. Thus the Galactic nucleus is a dynamic and highly-energized environment implying that extreme caution must be exercised in interpreting any unusual or unexpected signal from (or emerging from) the region as evidence for dark matter-related processes. One spectacular example of an `unexpected signal is the discovery within the last few years of the `Fermi Bubbles and, subsequently, their polarised radio counterparts. These giant lobes extend ~7 kpc from the nucleus into both north and south Galactic hemispheres. Hard-spectrum, microwave emission coincident with the lower reaches of the Bubbles has also been detected, first in WMAP, and more recently in Planck data. Debate continues as to the origin of the Bubbles and their multi-wavelength emissions: are they the signatures of relatively recent (in the last ~Myr) activity of the supermassive black hole or, alternatively, nuclear star formation? I will briefly review evidence that points to the latter interpretation.
We present a spectral analysis of the lobes and X-ray jets of Cygnus A, using more than 2 Ms of $textit{Chandra}$ observations. The X-ray jets are misaligned with the radio jets and significantly wider. We detect non-thermal emission components in bo th lobes and jets. For the eastern lobe and jet, we find 1 keV flux densities of $71_{-10}^{+10}$ nJy and $24_{-4}^{+4}$ nJy, and photon indices of $1.72_{-0.03}^{+0.03}$ and $1.64_{-0.04}^{+0.04}$ respectively. For the western lobe and jet, we find flux densities of $50_{-13}^{+12}$ nJy and $13_{-5}^{+5}$ nJy, and photon indices of $1.97_{-0.10}^{+0.23}$ and $1.86_{-0.12}^{+0.18}$ respectively. Using these results, we modeled the electron energy distributions of the lobes as broken power laws with age breaks. We find that a significant population of non-radiating particles is required to account for the total pressure of the eastern lobe. In the western lobe, no such population is required and the low energy cutoff to the electron distribution there needs to be raised to obtain pressures consistent with observations. This discrepancy is a consequence of the differing X-ray photon indices, which may indicate that the turnover in the inverse-Compton spectrum of the western lobe is at lower energies than in the eastern lobe. We modeled the emission from both jets as inverse-Compton emission. There is a narrow region of parameter space for which the X-ray jet can be a relic of an earlier active phase, although lack of knowledge about the jets electron distribution and particle content makes the modelling uncertain.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا