ترغب بنشر مسار تعليمي؟ اضغط هنا

Constructing phase space distributions with internal symmetries

89   0   0.0 ( 0 )
 نشر من قبل Niklas Mueller
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss an ab initio world-line approach to constructing phase space distributions in systems with internal symmetries. Starting from the Schwinger-Keldysh real time path integral in quantum field theory, we derive the most general extension of the Wigner phase space distribution to include color and spin degrees of freedom in terms of dynamical Grassmann variables. The corresponding Liouville distribution for colored particles, which obey Wongs equation, has only singlet and octet components, while higher moments are fully constrained by the Grassmann algebra. The extension of phase space dynamics to spin is represented by a generalization of the Pauli-Lubanski vector; its time evolution via the Bargmann-Michel-Telegdi equation also follows from the phase space trajectories of the underlying Grassmann coordinates. Our results for the Liouville phase space distribution in systems with both spin and color are of interest in fields as diverse as chiral fluids, finite temperature field theory and polarized parton distribution functions. We also comment on the role of the chiral anomaly in the phase space dynamics of spinning particles.



قيم البحث

اقرأ أيضاً

There have been many attempts to construct de Sitter space-times in string theory. While arguably there have been some successes, this has proven challenging, leading to the de Sitter swampland conjecture: quantum theories of gravity do not admit sta ble or metastable de Sitter space. Here we explain that, within controlled approximations, one lacks the tools to construct de Sitter space in string theory. Such approximations would require the existence of a set of (arbitrarily) small parameters, subject to severe constraints. But beyond this one also needs an understanding of big-bang and big-crunch singularities that is not currently accessible to standard approximations in string theory. The existence or non-existence of metastable de Sitter space in string theory remains a matter of conjecture.
In the current version of QCD the quarks are described by ordinary Dirac fields, organized in the following internal symmetry multiplets: the $SU(3)$ colour, the $SU(2)$ flavour, and broken $SU(3)$ providing the family triplets. oindent In this pape r we argue that internal and external (i.e. space-time) symmetries are entangled at least in the colour sector in order to introduce the spinorial quark fields in a way providing all the internal quarks degrees of freedom which do appear in the Standard Model. Because the $SU(3)$ colour algebra is endowed with natural $Z_3$-graded discrete automorphisms, in order to introduce entanglement the $Z_3$-graded version of Lorentz and Poincare algebras with their realizations are considered. The colour multiplets of quarks are described by $12$-component colour Dirac equations, with a $Z_3$-graded triplet of masses (one real and a Lee-Wick complex conjugate pair). We argue that all quarks in the Standard Model can be described by the $72$-component master quark sextet of $12$-component coloured Dirac fields.
Canonical Feynman integrals are of great interest in the study of scattering amplitudes at the multi-loop level. We propose to construct $dlog$-form integrals of the hypergeometric type, treat them as a representation of Feynman integrals, and projec t them into master integrals using intersection theory. This provides a constructive way to build canonical master integrals whose differential equations can be solved easily. We use our method to investigate both the maximally cut integrals and the uncut ones at one and two loops, and demonstrate its applicability in problems with multiple scales.
Precision experimental tests of the Standard Model of particle physics (SM) are one of our best hopes for discovering what new physics lies beyond the SM (BSM). Key in the search for new physics is the connection between theory and experiment. Forgin g this connection for searches involving low-energy hadronic or nuclear environments requires the use of a non-perturbative theoretical tool, lattice QCD. We present two recent lattice QCD calculations by the CalLat collaboration relevant for new physics searches: the nucleon axial coupling, $g_A$, whose precise value as predicted by the SM could help point to new physics contributions to the so-called neutron lifetime puzzle, and hadronic matrix elements of short-ranged operators relevant for neutrinoless double beta decay searches.
CFTs in Euclidean signature satisfy well-accepted rules, such as the convergent Euclidean OPE. It is nowadays common to assume that CFT correlators exist and have various properties also in Lorentzian signature. Some of these properties may represent extra assumptions, and it is an open question if they hold for familiar statistical-physics CFTs such as the critical 3d Ising model. Here we consider Wightman 4-point functions of scalar primaries in Lorentzian signature. We derive a minimal set of their properties solely from the Euclidean unitary CFT axioms, without using extra assumptions. We establish all Wightman axioms (temperedness, spectral property, local commutativity, clustering), Lorentzian conformal invariance, and distributional convergence of the s-channel Lorentzian OPE. This is done constructively, by analytically continuing the 4-point functions using the s-channel OPE expansion in the radial cross-ratios $rho, bar{rho}$. We prove a key fact that $|rho|, |bar{rho}| < 1$ inside the forward tube, and set bounds on how fast $|rho|, |bar{rho}|$ may tend to 1 when approaching the Minkowski space. We also provide a guide to the axiomatic QFT literature for the modern CFT audience. We review the Wightman and Osterwalder-Schrader (OS) axioms for Lorentzian and Euclidean QFTs, and the celebrated OS theorem connecting them. We also review a classic result of Mack about the distributional OPE convergence. Some of the classic arguments turn out useful in our setup. Others fall short of our needs due to Lorentzian assumptions (Mack) or unverifiable Euclidean assumptions (OS theorem).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا