ﻻ يوجد ملخص باللغة العربية
We discuss an ab initio world-line approach to constructing phase space distributions in systems with internal symmetries. Starting from the Schwinger-Keldysh real time path integral in quantum field theory, we derive the most general extension of the Wigner phase space distribution to include color and spin degrees of freedom in terms of dynamical Grassmann variables. The corresponding Liouville distribution for colored particles, which obey Wongs equation, has only singlet and octet components, while higher moments are fully constrained by the Grassmann algebra. The extension of phase space dynamics to spin is represented by a generalization of the Pauli-Lubanski vector; its time evolution via the Bargmann-Michel-Telegdi equation also follows from the phase space trajectories of the underlying Grassmann coordinates. Our results for the Liouville phase space distribution in systems with both spin and color are of interest in fields as diverse as chiral fluids, finite temperature field theory and polarized parton distribution functions. We also comment on the role of the chiral anomaly in the phase space dynamics of spinning particles.
There have been many attempts to construct de Sitter space-times in string theory. While arguably there have been some successes, this has proven challenging, leading to the de Sitter swampland conjecture: quantum theories of gravity do not admit sta
In the current version of QCD the quarks are described by ordinary Dirac fields, organized in the following internal symmetry multiplets: the $SU(3)$ colour, the $SU(2)$ flavour, and broken $SU(3)$ providing the family triplets. oindent In this pape
Canonical Feynman integrals are of great interest in the study of scattering amplitudes at the multi-loop level. We propose to construct $dlog$-form integrals of the hypergeometric type, treat them as a representation of Feynman integrals, and projec
Precision experimental tests of the Standard Model of particle physics (SM) are one of our best hopes for discovering what new physics lies beyond the SM (BSM). Key in the search for new physics is the connection between theory and experiment. Forgin
CFTs in Euclidean signature satisfy well-accepted rules, such as the convergent Euclidean OPE. It is nowadays common to assume that CFT correlators exist and have various properties also in Lorentzian signature. Some of these properties may represent