ﻻ يوجد ملخص باللغة العربية
Intrinsic limits to temperature-dependent substrate loss for GaN-on-Si technology, due to the change in resistivity of the substrate with temperature, are evaluated using an experimentally validated device simulation framework. Effect of room temperature substrate resistivity on temperature-dependent CPW line loss at various operating frequency bands are then presented. CPW lines for GaN-on-high resistivity Si are shown to have a pronounced temperature-dependence for temperatures above 150{deg}C and have lower substrate losses for frequencies above the X-band. On the other hand, GaN-on-low resistivity Si is shown to be more temperature-insensitive and have lower substrate losses than even HR-Si for lower operating frequencies. The effect of various CPW geometries on substrate loss is also presented to generalize the discussion. These results are expected to act as a benchmark for temperature dependent substrate loss in GaN-on-Si RF technology.
Perovskites have proven to be a promising candidate for highly-efficient solar cells, light-emitting diodes, and X-ray detectors, overcoming limitations of inorganic semiconductors. However, they are notoriously unstable. The main reason for this ins
In this letter, we demonstrate high-performance lateral AlGaN/GaN Schottky barrier diodes (SBD) on Si substrate with a recessed-anode structure. The optimized rapid etch process provides results in improving etching quality with a 0.26-nm roughness o
We propose and demonstrate a low-cost integrated photonic chip fabricated in a SOI foundry capable of simultaneously routing and amplifying light in a chip. This device is able to compensate insertion losses in photonic routers. It consists of standa
The wide bandgap, high-breakdown electric field, and high carrier mobility makes GaN an ideal material for high-power and high-frequency electronics applications such as wireless communication and radar systems. However, the performance and reliabili
Materials with properties that are modulated in time are known to display wave phenomena showing energy increasing with time, with the rate mediated by the modulation. Until now there has been no accounting for material dissipation, which clearly cou