ﻻ يوجد ملخص باللغة العربية
We perform a detailed analysis of the fundamental $f$-mode frequencies and damping times of nonrotating boson stars in general relativity by solving the nonradial perturbation equations. Two parameters which govern the microscopic properties of the bosonic condensates, namely the self-coupling strength and the mass of scalar particle, are explored. These two quantities characterize oscillations of boson star. Specifically, we reexamine some empirical relations that describe the $f$-mode parameters in terms of mass and radius of the boson stars. We found it is possible to constrain the equation of state if the fundamental oscillation mode is observed.
The cold dark matter (CDM) candidate with weakly interacting massive particles can successfully explain the observed dark matter relic density in cosmic scale and the large-scale structure of the Universe. However, a number of observations at the sat
We present a global study of the simplest scalar phantom dark matter model. The best fit parameters of the model are determined by simultaneously imposing (i) relic density constraint from WMAP, (ii) 225 live days data from direct experiment XENON100
We demonstrate that the observation of neutron stars with masses greater than one solar mass places severe demands on any exotic neutron decay mode that could explain the discrepancy between beam and bottle measurements of the neutron lifetime. If th
Two of the key unresolved issues facing Standard Model physics are (i) the appearance of a small but non-zero neutrino mass, and, (ii) the missing mass problem in the Universe. The focus of this paper is a previously proposed low energy effective the
A promising probe to unmask particle dark matter is to observe its effect on neutron stars, the prospects of which depend critically on whether captured dark matter thermalizes in a timely manner with the stellar core via repeated scattering with the