ﻻ يوجد ملخص باللغة العربية
The cold dark matter (CDM) candidate with weakly interacting massive particles can successfully explain the observed dark matter relic density in cosmic scale and the large-scale structure of the Universe. However, a number of observations at the satellite galaxy scale seem to be inconsistent with CDM simulation. This is known as the small-scale problem of CDM. In recent years, it has been demonstrated that self-interacting dark matter (SIDM) with a light mediator offers a reasonable explanation for the small-scale problem. We adopt a simple model with SIDM and focus on the effects of Sommerfeld enhancement. In this model, the dark matter candidate is a leptonic scalar particle with a light mediator. We have found several regions of the parameter space with proper masses and coupling strength generating a relic density that is consistent with the observed CDM relic density. Furthermore, this model satisfies the constraints of recent direct searches and indirect detection for dark matter as well as the effective number of neutrinos and the observed small-scale structure of the Universe. In addition, this model with the favored parameters can resolve the discrepancies between astrophysical observations and $N$-body simulations.
Light vector mediators can naturally induce velocity-dependent dark matter self-interactions while at the same time allowing for the correct dark matter relic abundance via thermal freeze-out. If these mediators subsequently decay into Standard Model
We examine Simplified Models in which fermionic DM interacts with Standard Model (SM) fermions via the exchange of an $s$-channel scalar mediator. The single-mediator version of this model is not gauge invariant, and instead we must consider models w
The existence of dark matter particles that carry phenomenologically relevant self-interaction cross sections mediated by light dark sector states is considered to be severely constrained through a combination of experimental and observational data.
We investigate the thermal cosmology and terrestrial and astrophysical phenomenology of a sub-GeV hadrophilic dark sector. The specific construction explored in this work features a Dirac fermion dark matter candidate interacting with a light scalar
Dark matter may self-interact through a continuum of low-mass states. This happens if dark matter couples to a strongly-coupled nearly-conformal hidden sector. This type of theory is holographically described by brane-localized dark matter interactin