ﻻ يوجد ملخص باللغة العربية
We introduce and investigate the notion of a `generalized equation of the form $f(D^2 u)=0$, based on the notions of subequations and Dirichlet duality. Precisely, a subset ${{mathbb H}}subset {rm Sym}^2({mathbb R}^n)$ is a generalized equation if it is an intersection ${{mathbb H}} = {{mathbb E}}cap (-widetilde{{{mathbb G}}})$ where ${{mathbb E}}$ and ${{mathbb G}}$ are subequations and $widetilde{{{mathbb G}}}$ is the subequation dual to ${{mathbb G}}$. We utilize a viscosity definition of `solution to ${{mathbb H}}$. The mirror of ${{mathbb H}}$ is defined by ${{mathbb H}}^* equiv {{mathbb G}}cap (-widetilde {{mathbb E}})$. One of the main results here concerns the Dirichlet problem on arbitrary bounded domains $Omegasubset {mathbb R}^n$ for solutions to ${{mathbb H}}$ with prescribed boundary function $varphi in C(partial Omega)$. We prove that: (A) Uniqueness holds $iff$ ${{mathbb H}}$ has no interior, and (B) Existence holds $iff$ ${{mathbb H}}^*$ has no interior. For (B) the appropriate boundary convexity of $partial Omega$ must be assumed. Many examples of generalized equations are discussed, including the constrained Laplacian, the twisted Monge-Amp`ere equation, and the $C^{1,1}$-equation. The closed sets ${{mathbb H}}$ which can be written as generalized equations are intrinsically characterized. For such an ${{mathbb H}}$ the set of subequation pairs with ${{mathbb H}} = {{mathbb E}}cap (-widetilde{{{mathbb G}}})$ is partially ordered, and there is a canonical least element, contained in all others. Harmonics for the canonical equation are harmonic for all others giving ${{mathbb H}}$. A general form of the main theorem, which holds on any manifold, is also established.
In his monograph Lec{c}ons sur les syst`emes orthogonaux et les coordonnees curvilignes. Principes de geometrie analytique, 1910, Darboux stated three theorems providing local existence and uniqueness of solutions to first order systems of the type [
The energy dependence of the cross sections for electromagnetic diffractive processes can be well described by a single power, $W^delta$. For $J/psi$ photoproduction this holds in the range from 20 GeV to 2 TeV. This feature is most easily explained
We give an exposition of the Horn inequalities and their triple role characterizing tensor product invariants, eigenvalues of sums of Hermitian matrices, and intersections of Schubert varieties. We follow Belkales geometric method, but assume only ba
We consider stability of non-rotating gaseous stars modeled by the Euler-Poisson system. Under general assumptions on the equation of states, we proved a turning point principle (TPP) that the stability of the stars is entirely determined by the mass
In this work, we propose a method for solving Kolmogorov hypoelliptic equations based on Fourier transform and Feynman-Kac formula. We first explain how the Feynman-Kac formula can be used to compute the fundamental solution to parabolic equations wi