ﻻ يوجد ملخص باللغة العربية
In this work, we propose a method for solving Kolmogorov hypoelliptic equations based on Fourier transform and Feynman-Kac formula. We first explain how the Feynman-Kac formula can be used to compute the fundamental solution to parabolic equations with linear or quadratic potential. Then applying these results after a Fourier transform we deduce the computation of the solution to a a first class of Kolmogorov hypoelliptic equations. Then we solve partial differential equations obtained via Feynman-Kac formula from the Ornstein-Uhlenbeck generator. Also, a new small time approximation of the solution to Kolmogorov hypoelliptic equations is provided. We finally present the results of numerical experiments to check the practical efficiency of this approximation.
We show how to apply harmonic spaces potential theory in the study of the Dirichlet problem for a general class of evolution hypoelliptic partial differential equations of second order. We construct Perron-Wiener solution and we provide a sufficient
We prove a maximum principle for mild solutions to stochastic evolution equations with (locally) Lipschitz coefficients and Wiener noise on weighted $L^2$ spaces. As an application, we provide sufficient conditions for the positivity of forward rates
In $mathbb R^d$, $d geq 3$, consider the divergence and the non-divergence form operators begin{equation} tag{$i$} - abla cdot a cdot abla + b cdot abla, end{equation} begin{equation} tag{$ii$} - a cdot abla^2 + b cdot abla, end{equation} where
Using time dependent Lyapunov functions, we prove pointwise upper bounds for the heat kernels of some nonautonomous Kolmogorov operators with possibly unbounded drift and diffusion coefficients.
We provide sufficient conditions on the coefficients of a stochastic evolution equation on a Hilbert space of functions driven by a cylindrical Wiener process ensuring that its mild solution is positive if the initial datum is positive. As an applica