ﻻ يوجد ملخص باللغة العربية
Future smart vehicles will incorporate high-data-rate communications and high-resolution radar sensing capabilities operating in the millimeter-wave and higher frequencies. These two systems are preparing to share and reuse a lot of common functionalities, such as steerable millimeter-wave antenna arrays. Motivated by this growing overlap, and advanced further by the space and cost constraints, the vehicular community is pursuing a vision of unified vehicular communications and radar sensing, which represents a major paradigm shift for next-generation connected and self-driving cars. This article outlines a path to materialize this decisive transformation. We begin by reviewing the latest developments in hybrid vehicular communications and radar systems, and then propose a concept of unified channel access over millimeter-wave and higher frequencies. Our supporting system-level performance characterization relies upon real-life measurements and massive ray-based modeling to confirm the significant improvements brought by our proposal to mitigating the interference and deafness effects. Since our results aim to open the door to unified vehicular communications and radar sensing, we conclude by outlining the potential research directions in this rapidly developing field.
Millimeter wave wireless spectrum deployments will allow vehicular communications to share high data rate vehicular sensor data in real-time. The highly directional nature of wireless links in millimeter spectral bands will require continuous channel
The capability of smarter networked devices to dynamically select appropriate radio connectivity options is especially important in the emerging millimeter-wave (mmWave) systems to mitigate abrupt link blockage in complex environments. To enrich the
Synergistic design of communications and radar systems with common spectral and hardware resources is heralding a new era of efficiently utilizing a limited radio-frequency spectrum. Such a joint radar-communications (JRC) model has advantages of low
For future networks (i.e., the fifth generation (5G) wireless networks and beyond), millimeter-wave (mmWave) communication with large available unlicensed spectrum is a promising technology that enables gigabit multimedia applications. Thanks to the
The use of extremely high frequency (EHF) or millimeter-wave (mmWave) band has attracted significant attention for the next generation wireless access networks. As demonstrated by recent measurements, mmWave frequencies render themselves quite sensit