ﻻ يوجد ملخص باللغة العربية
We consider a finite-size spherical bubble with a nonequilibrium value of the $q$-field, where the bubble is immersed in an infinite vacuum with the constant equilibrium value $q_{0}$ for the $q$-field (this $q_{0}$ has already cancelled an initial cosmological constant). Numerical results are presented for the time evolution of such a $q$-bubble with gravity turned off and with gravity turned on. For small enough bubbles and a $q$-field energy scale sufficiently below the gravitational energy scale $E_text{Planck}$, the vacuum energy of the $q$-bubble is found to disperse completely. For large enough bubbles and a finite value of $E_text{Planck}$, the vacuum energy of the $q$-bubble disperses only partially and there occurs gravitational collapse near the bubble center.
Metastable states decay at zero temperature through quantum tunneling at an exponentially small rate, which depends on the Coleman-de Luccia instanton, also known as bounce. In some theories, the bounce may not exist or its on-shell action may be ill
We are living in a golden age for experimental cosmology. New experiments with high accuracy precision are been used to constrain proposals of several theories of gravity, as it has been never done before. However, important roles to constrain new th
We study a false vacuum decay in a two-dimensional black hole spacetime background. The decay rate in the case that nucleation site locates at a black hole center has been calculated in the literature. We develop a method for calculating the decay ra
False vacuum decay in field theory may be formulated as a boundary value problem in Euclidean space. In a previous work, we studied its solution in single scalar field theories with quadratic gravity and used it to find obstructions to vacuum decay.
Finding numerical solutions describing bubble nucleation is notoriously difficult in more than one field space dimension. Traditional shooting methods fail because of the extreme non-linearity of field evolution over a macroscopic distance as a funct