ﻻ يوجد ملخص باللغة العربية
We discuss solutions of an algebraic model of the hexagonal lattice vibrations, which point out interesting localization properties of the eigenstates at van Hove singularities (vHs), whose energies correspond to Excited-State Quantum Phase Transitions (ESQPT). We show that these states form stripes oriented parallel to the zig-zag direction of the lattice, similar to the well-known edge states found at the Dirac point, however the vHs-stripes appear in the bulk. We interpret the states as lines of cell-tilting vibrations, and inspect their stability in the large lattice-size limit. The model can be experimentally realized by superconducting 2D microwave resonators containing triangular lattices of metallic cylinders, which simulate finite-sized graphene flakes. Thus we can assume that the effects discussed here could be experimentally observed.
Concentrating on bosonic lattice systems, we ask whether and how Excited State Quantum Phase Transition (ESQPT) singularities occur in condensed matter systems with ground state QPTs. We study in particular the spectral singularities above the ground
Understanding and tuning correlated states is of great interest and significance to modern condensed matter physics. The recent discovery of unconventional superconductivity and Mott-like insulating states in magic-angle twisted bilayer graphene (tBL
Electronic instabilities at the crossing of the Fermi energy with a Van Hove singularity in the density of states often lead to new phases of matter such as superconductivity, magnetism or density waves. However, in most materials this condition is d
Extensive scanning tunnelling microscopy and spectroscopy experiments complemented by first principles and parameterized tight binding calculations provide a clear answer to the existence, origin and robustness of van Hove singularities (vHs) in twis
We study distributions of the ratios of level spacings of a rectangular and an Africa-shaped superconducting microwave resonator containing circular scatterers on a triangular grid, so-called Dirac billiards (DBs). The high-precision measurements all