ﻻ يوجد ملخص باللغة العربية
We study distributions of the ratios of level spacings of a rectangular and an Africa-shaped superconducting microwave resonator containing circular scatterers on a triangular grid, so-called Dirac billiards (DBs). The high-precision measurements allowed the determination of all 1651 and 1823 eigenfrequencies in the first two bands, respectively. The resonance densities are similar to that of graphene. They exhibit two sharp peaks at the van Hove singularities, that separate the band structure into regions with a linear and a quadratic dispersion relation, respectively. In their vicinity we observe rapid changes, e.g., in the wavefunction structure. Accordingly, the question arose, whether there the spectral properties are still determined by the shapes of the DBs. The commonly used statistical measures, however, are no longer applicable whereas, as demonstrated in this Letter, the ratio distributions provide most suitable ones.
Wave kinetic theory has been developed to describe the statistical dynamics of weakly nonlinear, dispersive waves. However, we show that systems which are generally dispersive can have resonant sets of wave modes with identical group velocities, lead
The Hofstadter butterfly is a quantum fractal with a highly complex nested set of gaps, where each gap represents a quantum Hall state whose quantized conductivity is characterized by topological invariants known as the Chern numbers. Here we obtain
We discuss solutions of an algebraic model of the hexagonal lattice vibrations, which point out interesting localization properties of the eigenstates at van Hove singularities (vHs), whose energies correspond to Excited-State Quantum Phase Transitio
The possibility of triggering correlated phenomena by placing a singularity of the density of states near the Fermi energy remains an intriguing avenue towards engineering the properties of quantum materials. Twisted bilayer graphene is a key materia
We determine with unprecedented accuracy the lowest 900 eigenvalues of two quantum constant-width billiards from resonance spectra measured with flat, superconducting microwave resonators. While the classical dynamics of the constant-width billiards