ﻻ يوجد ملخص باللغة العربية
We motivate and propose a new model for non-cooperative Markov game which considers the interactions of risk-aware players. This model characterizes the time-consistent dynamic risk from both stochastic state transitions (inherent to the game) and randomized mixed strategies (due to all other players). An appropriate risk-aware equilibrium concept is proposed and the existence of such equilibria is demonstrated in stationary strategies by an application of Kakutanis fixed point theorem. We further propose a simulation-based Q-learning type algorithm for risk-aware equilibrium computation. This algorithm works with a special form of minimax risk measures which can naturally be written as saddle-point stochastic optimization problems, and covers many widely investigated risk measures. Finally, the almost sure convergence of this simulation-based algorithm to an equilibrium is demonstrated under some mild conditions. Our numerical experiments on a two player queuing game validate the properties of our model and algorithm, and demonstrate their worth and applicability in real life competitive decision-making.
We consider a new setting of facility location games with ordinal preferences. In such a setting, we have a set of agents and a set of facilities. Each agent is located on a line and has an ordinal preference over the facilities. Our goal is to desig
In an adversarial environment, a hostile player performing a task may behave like a non-hostile one in order not to reveal its identity to an opponent. To model such a scenario, we define identity concealment games: zero-sum stochastic reachability g
In many sequential decision-making problems one is interested in minimizing an expected cumulative cost while taking into account emph{risk}, i.e., increased awareness of events of small probability and high consequences. Accordingly, the objective o
This paper examines the convergence of no-regret learning in Cournot games with continuous actions. Cournot games are the essential model for many socio-economic systems, where players compete by strategically setting their output quantity. We assume
We initiate the work on maximin share (MMS) fair allocation of m indivisible chores to n agents using only their ordinal preferences, from both algorithmic and mechanism design perspectives. The previous best-known approximation is 2-1/n by Aziz et a