ترغب بنشر مسار تعليمي؟ اضغط هنا

Facility Location Games with Ordinal Preferences

149   0   0.0 ( 0 )
 نشر من قبل Chenhao Wang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a new setting of facility location games with ordinal preferences. In such a setting, we have a set of agents and a set of facilities. Each agent is located on a line and has an ordinal preference over the facilities. Our goal is to design strategyproof mechanisms that elicit truthful information (preferences and/or locations) from the agents and locate the facilities to minimize both maximum and total cost objectives as well as to maximize both minimum and total utility objectives. For the four possible objectives, we consider the 2-facility settings in which only preferences are private, or locations are private. For each possible combination of the objectives and settings, we provide lower and upper bounds on the approximation ratios of strategyproof mechanisms, which are asymptotically tight up to a constant. Finally, we discuss the generalization of our results beyond two facilities and when the agents can misreport both locations and preferences.



قيم البحث

اقرأ أيضاً

We consider a facility location game in which $n$ agents reside at known locations on a path, and $k$ heterogeneous facilities are to be constructed on the path. Each agent is adversely affected by some subset of the facilities, and is unaffected by the others. We design two classes of mechanisms for choosing the facility locations given the reported agent preferences: utilitarian mechanisms that strive to maximize social welfare (i.e., to be efficient), and egalitarian mechanisms that strive to maximize the minimum welfare. For the utilitarian objective, we present a weakly group-strategyproof efficient mechanism for up to three facilities, we give a strongly group-strategyproof mechanism that guarantees at least half of the optimal social welfare for arbitrary $k$, and we prove that no strongly group-strategyproof mechanism achieves an approximation ratio of $5/4$ for one facility. For the egalitarian objective, we present a strategyproof egalitarian mechanism for arbitrary $k$, and we prove that no weakly group-strategyproof mechanism achieves a $o(sqrt{n})$ approximation ratio for two facilities. We extend our egalitarian results to the case where the agents are located on a cycle, and we extend our first egalitarian result to the case where the agents are located in the unit square.
We study the facility location games with candidate locations from a mechanism design perspective. Suppose there are n agents located in a metric space whose locations are their private information, and a group of candidate locations for building fac ilities. The authority plans to build some homogeneous facilities among these candidates to serve the agents, who bears a cost equal to the distance to the closest facility. The goal is to design mechanisms for minimizing the total/maximum cost among the agents. For the single-facility problem under the maximum-cost objective, we give a deterministic 3-approximation group strategy-proof mechanism, and prove that no deterministic (or randomized) strategy-proof mechanism can have an approximation ratio better than 3 (or 2). For the two-facility problem on a line, we give an anonymous deterministic group strategy-proof mechanism that is (2n-3)-approximation for the total-cost objective, and 3-approximation for the maximum-cost objective. We also provide (asymptotically) tight lower bounds on the approximation ratio.
Recommendation systems are extremely popular tools for matching users and contents. However, when content providers are strategic, the basic principle of matching users to the closest content, where both users and contents are modeled as points in so me semantic space, may yield low social welfare. This is due to the fact that content providers are strategic and optimize their offered content to be recommended to as many users as possible. Motivated by modern applications, we propose the widely studied framework of facility location games to study recommendation systems with strategic content providers. Our conceptual contribution is the introduction of a $textit{mediator}$ to facility location models, in the pursuit of better social welfare. We aim at designing mediators that a) induce a game with high social welfare in equilibrium, and b) intervene as little as possible. In service of the latter, we introduce the notion of $textit{intervention cost}$, which quantifies how much damage a mediator may cause to the social welfare when an off-equilibrium profile is adopted. As a case study in high-welfare low-intervention mediator design, we consider the one-dimensional segment as the user domain. We propose a mediator that implements the socially optimal strategy profile as the unique equilibrium profile, and show a tight bound on its intervention cost. Ultimately, we consider some extensions, and highlight open questions for the general agenda.
This paper is devoted to the two-opposite-facility location games with a penalty whose amount depends on the distance between the two facilities to be opened by an authority. The two facilities are opposite in that one is popular and the other is obn oxious. Every selfish agent in the game wishes to stay close to the popular facility and stay away from the obnoxious one; its utility is measured by the difference between its distances to the obnoxious facility and the popular one. The authority determines the locations of the two facilities on a line segment where all agents are located. Each agent has its location information as private, and is required to report its location to the authority. Using the reported agent locations as input, an algorithmic mechanism run by the authority outputs the locations of the two facilities with an aim to maximize certain social welfare. The sum-type social welfare concerns with the penalized total utility of all agents, for which we design both randomized and deterministic group strategy-proof mechanisms with provable approximation ratios, and establish a lower bound on the approximation ratio of any deterministic strategy-proof mechanism. The bottleneck-type social welfare concerns with the penalized minimum utility among all agents, for which we propose a deterministic group strategy-proof mechanism that ensures optimality.
108 - Haris Aziz , Bo Li , Xiaowei Wu 2020
We initiate the work on maximin share (MMS) fair allocation of m indivisible chores to n agents using only their ordinal preferences, from both algorithmic and mechanism design perspectives. The previous best-known approximation is 2-1/n by Aziz et a l. [IJCAI 2017]. We improve this result by giving a simple deterministic 5/3-approximation algorithm that determines an allocation sequence of agents, according to which items are allocated one by one. By a tighter analysis, we show that for n=2,3, our algorithm achieves better approximation ratios, and is actually optimal. We also consider the setting with strategic agents, where agents may misreport their preferences to manipulate the outcome. We first provide a O(log (m/n))-approximation consecutive picking algorithm, and then improve the approximation ratio to O(sqrt{log n}) by a randomized algorithm. Our results uncover some interesting contrasts between the approximation ratios achieved for chores versus goods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا