ﻻ يوجد ملخص باللغة العربية
We introduce a new discretization of a mixed formulation of the incompressible Stokes equations that includes symmetric viscous stresses. The method is built upon a mass conserving mixed formulation that we recently studied. The improvement in this work is a new method that directly approximates the viscous fluid stress $sigma$, enforcing its symmetry weakly. The finite element space in which the stress is approximated consists of matrix-valued functions having continuous normal-tangential components across element interfaces. Stability is achieved by adding certain matrix bubbles that were introduced earlier in the literature on finite elements for linear elasticity. Like the earlier work, the new method here approximates the fluid velocity $u$ using $H(operatorname{div})$-conforming finite elements, thus providing exact mass conservation. Our error analysis shows optimal convergence rates for the pressure and the stress variables. An additional post processing yields an optimally convergent velocity satisfying exact mass conservation. The method is also pressure robust.
We propose a new discretization of a mixed stress formulation of the Stokes equations. The velocity $u$ is approximated with $H(operatorname{div})$-conforming finite elements providing exact mass conservation. While many standard methods use $H^1$-co
A stress equilibration procedure for linear elasticity is proposed and analyzed in this paper with emphasis on the behavior for (nearly) incompressible materials. Based on the displacement-pressure approximation computed with a stable finite element
A posteriori error estimates are constructed for the three-field variational formulation of the Biot problem involving the displacements, the total pressure and the fluid pressure. The discretization under focus is the H1({Omega})-conforming Taylor-H
Hydrodynamics of the non-relativistic compressible fluid in the curved spacetime is derived using the generalized framework of the stochastic variational method (SVM) for continuum medium. The fluid-stress tensor of the resultant equation becomes asy
The enrichment formulation of double-interpolation finite element method (DFEM) is developed in this paper. DFEM is first proposed by Zheng emph{et al} (2011) and it requires two stages of interpolation to construct the trial function. The first stag