ترغب بنشر مسار تعليمي؟ اضغط هنا

ODE Test Problems: a MATLAB suite of initial value problems

212   0   0.0 ( 0 )
 نشر من قبل Steven Roberts
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

ODE Test Problems (OTP) is an object-oriented MATLAB package offering a broad range of initial value problems which can be used to test numerical methods such as time integration methods and data assimilation (DA) methods. It includes problems that are linear and nonlinear, homogeneous and nonhomogeneous, autonomous and nonautonomous, scalar and high-dimensional, stiff and nonstiff, and chaotic and nonchaotic. Many are real-world problems from fields such as chemistry, astrophysics, meteorology, and electrical engineering. OTP also supports partitioned ODEs for testing IMEX methods, multirate methods, and other multimethods. Functions for plotting solutions and creating movies are available for all problems, and exact solutions are provided when available. OTP is desgined for ease of use-meaning that working with and modifying problems is simple and intuitive.



قيم البحث

اقرأ أيضاً

We make a rigorous study of classical field equations on a 2-dimensional signature changing spacetime using the techniques of operator theory. Boundary conditions at the surface of signature change are determined by forming self-adjoint extensions of the Schrodinger Hamiltonian. We show that the initial value problem for the Klein--Gordon equation on this spacetime is ill-posed in the sense that its solutions are unstable. Furthermore, if the initial data is smooth and compactly supported away from the surface of signature change, the solution has divergent $L^2$-norm after finite time.
This work focuses on the construction of a new class of fourth-order accurate methods for multirate time evolution of systems of ordinary differential equations. We base our work on the Recursive Flux Splitting Multirate (RFSMR) version of the Multir ate Infinitesimal Step (MIS) methods and use recent theoretical developments for Generalized Additive Runge-Kutta methods to propose our higher-order Relaxed Multirate Infinitesimal Step extensions. The resulting framework supports a range of attractive properties for multirate methods, including telescopic extensions, subcycling, embeddings for temporal error estimation, and support for changes to the fast/slow time-scale separation between steps, without requiring any sacrifices in linear stability. In addition to providing rigorous theoretical developments for these new methods, we provide numerical tests demonstrating convergence and efficiency on a suite of multirate test problems.
A reaction-diffusion equation with power nonlinearity formulated either on the half-line or on the finite interval with nonzero boundary conditions is shown to be locally well-posed in the sense of Hadamard for data in Sobolev spaces. The result is e stablished via a contraction mapping argument, taking advantage of a novel approach that utilizes the formula produced by the unified transform method of Fokas for the forced linear heat equation to obtain linear estimates analogous to those previously derived for the nonlinear Schrodinger, Korteweg-de Vries and good Boussinesq equations. Thus, the present work extends the recently introduced unified transform method approach to well-posedness from dispersive equations to diffusive ones.
Type-2 fuzzy differential equations (T2FDEs) of order 1 are already known and the solution method of type-2 fuzzy initial value problems (T2FIVPs) for them was given by M. Mazandarani and M. Najariyan cite{MN} in 2014. We give the solution method of second-order T2FIVPs in this paper. Furthermore, we would like to propose new notations for type-2 fuzzy theory where symbols tend to be complicated and misleading. In particular, the Hukuhara differential symbols introduced experimentally in this paper will give us clearler meanings and expressions.
We describe a modular rewriting system for translating optimization problems written in a domain-specific language to forms compatible with low-level solver interfaces. Translation is facilitated by reductions, which accept a category of problems and transform instances of that category to equivalent instances of another category. Our system proceeds in two key phases: analysis, in which we attempt to find a suitable solver for a supplied problem, and canonicalization, in which we rewrite the problem in the selected solvers standard form. We implement the described system in version 1.0 of CVXPY, a domain-specific language for mathematical and especially convex optimization. By treating reductions as first-class objects, our method makes it easy to match problems to solvers well-suited for them and to support solvers with a wide variety of standard forms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا