ﻻ يوجد ملخص باللغة العربية
Pairing interaction between fermionic particles leads to composite Bosons that condense at low temperature. Such condensate gives rise to long range order and phase coherence in superconductivity, superfluidity, and other exotic states of matter in the quantum limit. In graphene double-layers separated by an ultra-thin insulator, strong interlayer Coulomb interaction introduces electron-hole pairing across the two layers, resulting in a unique superfluid phase of interlayer excitons. In this work, we report a series of emergent fractional quantum Hall ground states in a graphene double-layer structure, which is compared to an expanded composite fermion model with two-component correlation. The ground state hierarchy from bulk conductance measurement and Hall resistance plateau from Coulomb drag measurement provide strong experimental evidence for a sequence of effective integer quantum Hall effect states for the novel two-component composite fermions (CFs), where CFs fill integer number of effective LLs (Lambda-level). Most remarkably, a sequence of incompressible states with interlayer correlation are observed at half-filled Lambda-levels, which represents a new type of order involving pairing states of CFs that is unique to graphene double-layer structure and beyond the conventional CF model.
Composite fermions in fractional quantum Hall (FQH) systems are believed to form a Fermi sea of weakly interacting particles at half filling $ u=1/2$. Recently, it was proposed (D. T. Son, Phys. Rev. X 5, 031027 (2015)) that these composite fermions
Theory predicts that double layer systems realize two-component composite fermions, which are formed when electrons capture both intra- and inter-layer vortices, to produce a wide variety of new strongly correlated liquid and crystal states as a func
We induce surface carrier densities up to $sim7cdot 10^{14}$cm$^{-2}$ in few-layer graphene devices by electric double layer gating with a polymeric electrolyte. In 3-, 4- and 5-layer graphene below 20-30K we observe a logarithmic upturn of resistanc
When two-dimensional atomic crystals are brought into close proximity to form a van der Waals heterostructure, neighbouring crystals can start influencing each others electronic properties. Of particular interest is the situation when the periodicity
In the recent advancement in Graphene heterostructures, it is possible to create a double layer tunnel decoupled Graphene system which has strong interlayer electronic interaction. In this work, we restrict the parameters in the Hamiltonian using sim