ﻻ يوجد ملخص باللغة العربية
We induce surface carrier densities up to $sim7cdot 10^{14}$cm$^{-2}$ in few-layer graphene devices by electric double layer gating with a polymeric electrolyte. In 3-, 4- and 5-layer graphene below 20-30K we observe a logarithmic upturn of resistance that we attribute to weak localization in the diffusive regime. By studying this effect as a function of carrier density and with ab-initio calculations we derive the dependence of transport, intervalley and phase coherence scattering lifetimes on total carrier density. We find that electron-electron scattering in the Nyquist regime is the main source of dephasing at temperatures lower than 30K in the $sim10^{13}$cm$^{-2}$ to $sim7 cdot 10^{14}$cm$^{-2}$ range of carrier densities. With the increase of gate voltage, transport elastic scattering is dominated by the competing effects due to the increase in both carrier density and charged scattering centers at the surface. We also tune our devices into a crossover regime between weak and strong localization, indicating that simultaneous tunability of both carrier and defect density at the surface of electric double layer gated materials is possible.
We analyze the effect of screening provided by the additional graphene layer in double layer graphene heterostructures (DLGs) on transport characteristics of DLG devices in the metallic regime. The effect of gate-tunable charge density in the additio
Since the discovery of graphene -a single layer of carbon atoms arranged in a honeycomb lattice - it was clear that this truly is a unique material system with an unprecedented combination of physical properties. Graphene is the thinnest membrane pre
Van der Waals (vdW) assembly of two-dimensional materials has been long recognized as a powerful tool to create unique systems with properties that cannot be found in natural compounds. However, among the variety of vdW heterostructures and their var
The temperature dependence of electric transport properties of single-layer and few-layer graphene at large charge doping is of great interest both for the study of the scattering processes dominating the conductivity at different temperatures and in
We discuss transport through double gated single and few layer graphene devices. This kind of device configuration has been used to investigate the modulation of the energy band structure through the application of an external perpendicular electric