ترغب بنشر مسار تعليمي؟ اضغط هنا

A Truthful FPTAS Mechanism for Emergency Demand Response in Colocation Data Centers

104   0   0.0 ( 0 )
 نشر من قبل Jianhai Chen
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Demand response (DR) is not only a crucial solution to the demand side management but also a vital means of electricity market in maintaining power grid reliability, sustainability and stability. DR can enable consumers (e.g. data centers) to reduce their electricity consumption when the supply of electricity is a shortage. The consumers will be rewarded in the case of DR if they reduce or shift some of their energy usage during peak hours. Aiming at solving the efficiency of DR, in this paper, we present MEDR, a mechanism on emergency DR in colocation data center. First, we formalize the MEDR problem and propose a dynamic programming to solve the optimization version of the problem. We then design a deterministic mechanism as a solution to solve the MEDR problem. We show that our proposed mechanism is truthful. Next, we prove that our mechanism is an FPTAS, i.e., it can be approximated within $1 + epsilon$ for any given $epsilon > 0$, while the running time of our mechanism is polynomial in $n$ and $1/epsilon$, where $n$ is the number of tenants in the datacenter. Furthermore, we also give an auction system covering the efficient FPTAS algorithm as bidding decision program for DR in colocation datacenter. Finally, we choose a practical smart grid dataset to build a large number of datasets for simulation in performance evaluation. By evaluating metrics of the approximation ratio of our mechanism, the non-negative utility of tenants and social cost of colocation datacenter, the results demonstrate the effectiveness of our work.



قيم البحث

اقرأ أيضاً

We propose a truthful-in-expectation, $(1-1/e)$-approximation mechanism for a strategic variant of the generalized assignment problem (GAP). In GAP, a set of items has to be optimally assigned to a set of bins without exceeding the capacity of any si ngular bin. In the strategic variant of the problem we study, values for assigning items to bins are the private information of bidders and the mechanism should provide bidders with incentives to truthfully report their values. The approximation ratio of the mechanism is a significant improvement over the approximation ratio of the existing truthful mechanism for GAP. The proposed mechanism comprises a novel convex optimization program as the allocation rule as well as an appropriate payment rule. To implement the convex program in polynomial time, we propose a fractional local search algorithm which approximates the optimal solution within an arbitrarily small error leading to an approximately truthful-in-expectation mechanism. The presented algorithm improves upon the existing optimization algorithms for GAP in terms of simplicity and runtime while the approximation ratio closely matches the best approximation ratio given for GAP when all inputs are publicly known.
We consider a demand management problem of an energy community, in which several users obtain energy from an external organization such as an energy company, and pay for the energy according to pre-specified prices that consist of a time-dependent pr ice per unit of energy, as well as a separate price for peak demand. Since users utilities are their private information, which they may not be willing to share, a mediator, known as the planner, is introduced to help optimize the overall satisfaction of the community (total utility minus total payments) by mechanism design. A mechanism consists of a message space, a tax/subsidy and an allocation function for each user. Each user reports a message chosen from her own message space, and then receives some amount of energy determined by the allocation function and pays the tax specified by the tax function. A desirable mechanism induces a game, the Nash equilibria (NE) of which result in an allocation that coincides with the optimal allocation for the community. As a starting point, we design a mechanism for the energy community with desirable properties such as full implementation, strong budget balance and individual rationality for both users and the planner. We then modify this baseline mechanism for communities where message exchanges are allowed only within neighborhoods, and consequently, the tax/subsidy and allocation functions of each user are only determined by the messages from her neighbors. All the desirable properties of the baseline mechanism are preserved in the distributed mechanism. Finally, we present a learning algorithm for the baseline mechanism, based on projected gradient descent, that is guaranteed to converge to the NE of the induced game.
Power companies such as Southern California Edison (SCE) uses Demand Response (DR) contracts to incentivize consumers to reduce their power consumption during periods when demand forecast exceeds supply. Current mechanisms in use offer contracts to c onsumers independent of one another, do not take into consideration consumers heterogeneity in consumption profile or reliability, and fail to achieve high participation. We introduce DR-VCG, a new DR mechanism that offers a flexible set of contracts (which may include the standard SCE contracts) and uses VCG pricing. We prove that DR-VCG elicits truthful bids, incentivizes honest preparation efforts, enables efficient computation of allocation and prices. With simple fixed-penalty contracts, the optimization goal of the mechanism is an upper bound on probability that the reduction target is missed. Extensive simulations show that compared to the current mechanism deployed in by SCE, the DR-VCG mechanism achieves higher participation, increased reliability, and significantly reduced total expenses.
160 - Qing Liu , Tie Luo , Ruiming Tang 2018
In a crowdsourcing market, a requester is looking to form a team of workers to perform a complex task that requires a variety of skills. Candidate workers advertise their certified skills and bid prices for their participation. We design four incenti ve mechanisms for selecting workers to form a valid team (that can complete the task) and determining each individual workers payment. We examine profitability, individual rationality, computational efficiency, and truthfulness for each of the four mechanisms. Our analysis shows that TruTeam, one of the four mechanisms, is superior to the others, particularly due to its computational efficiency and truthfulness. Our extensive simulations confirm the analysis and demonstrate that TruTeam is an efficient and truthful pricing mechanism for team formation in crowdsourcing markets.
In this paper, we study a problem of truthful mechanism design for a strategic variant of the generalized assignment problem (GAP) in a both payment-free and prior-free environment. In GAP, a set of items has to be optimally assigned to a set of bins without exceeding the capacity of any singular bin. In the strategic variant of the problem we study, bins are held by strategic agents, and each agent may hide its compatibility with some items in order to obtain items of higher values. The compatibility between an agent and an item encodes the willingness of the agent to receive the item. Our goal is to maximize total value (sum of agents values, or social welfare) while certifying no agent can benefit from hiding its compatibility with items. The model has applications in auctions with budgeted bidders. For two variants of the problem, namely emph{multiple knapsack problem} in which each item has the same size and value over bins, and emph{density-invariant GAP} in which each item has the same value density over the bins, we propose truthful $4$-approximation algorithms. For the general problem, we propose an $O(ln{(U/L)})$-approximation mechanism where $U$ and $L$ are the upper and lower bounds for value densities of the compatible item-bin pairs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا