ﻻ يوجد ملخص باللغة العربية
In this paper, we study a problem of truthful mechanism design for a strategic variant of the generalized assignment problem (GAP) in a both payment-free and prior-free environment. In GAP, a set of items has to be optimally assigned to a set of bins without exceeding the capacity of any singular bin. In the strategic variant of the problem we study, bins are held by strategic agents, and each agent may hide its compatibility with some items in order to obtain items of higher values. The compatibility between an agent and an item encodes the willingness of the agent to receive the item. Our goal is to maximize total value (sum of agents values, or social welfare) while certifying no agent can benefit from hiding its compatibility with items. The model has applications in auctions with budgeted bidders. For two variants of the problem, namely emph{multiple knapsack problem} in which each item has the same size and value over bins, and emph{density-invariant GAP} in which each item has the same value density over the bins, we propose truthful $4$-approximation algorithms. For the general problem, we propose an $O(ln{(U/L)})$-approximation mechanism where $U$ and $L$ are the upper and lower bounds for value densities of the compatible item-bin pairs.
We propose a truthful-in-expectation, $(1-1/e)$-approximation mechanism for a strategic variant of the generalized assignment problem (GAP). In GAP, a set of items has to be optimally assigned to a set of bins without exceeding the capacity of any si
We study the problem of fairly dividing a heterogeneous resource, commonly known as cake cutting and chore division, in the presence of strategic agents. While a number of results in this setting have been established in previous works, they rely cru
We propose a mechanism to allocate slots fairly at congested airports. This mechanism: (a) ensures that the slots are allocated according to the true valuations of airlines, (b) provides fair opportunities to the flights connecting remote cities to l
Demand response (DR) is not only a crucial solution to the demand side management but also a vital means of electricity market in maintaining power grid reliability, sustainability and stability. DR can enable consumers (e.g. data centers) to reduce
In a crowdsourcing market, a requester is looking to form a team of workers to perform a complex task that requires a variety of skills. Candidate workers advertise their certified skills and bid prices for their participation. We design four incenti