ﻻ يوجد ملخص باللغة العربية
The enhancement and control of non-linear phenomena at a nanometer scale has a wide range of applications in science and in industry. Among these phenomena, high-harmonic generation in solids is a recent focus of research to realize next generation petahertz optoelectronic devices or compact all solid state EUV sources. Here, we report on the realization of the first nanoscale high harmonic source. The strong field regime is reached by confining the electric field from a few nanojoules femtosecond laser in a single 3D semiconductor waveguide. We reveal a strong competition between enhancement of coherent harmonics and incoherent fluorescence favored by excitonic processes. However, far from the band edge, clear enhancement of the harmonic emission is reported with a robust sustainability offering a compact nanosource for applications. We illustrate the potential of our harmonic nano-device by performing a coherent diffractive imaging experiment. Ultra-compact UV/X-ray nanoprobes are foreseen to have other potential applications such as petahertz electronics, nano-tomography or nano-medicine.
The recent observation of high-harmonic generation from solids creates a new possibility for engineering fundamental strong-field processes by patterning the solid target with subwavelength nanostructures. All-dielectric metasurfaces exhibit high dam
High-order harmonic generation (HHG) from crystals offers a new source of coherent extreme ultraviolet (XUV) attosecond radiation.
Strong field-confinement, long-lifetime resonances, and slow-light effects suggest that meta surfaces are a promising tool for nonlinear optical applications. These nanostructured devices have been utilized for relatively high efficiency solid-state
We study second harmonic generation in nonlinear, GaAs gratings. We find large enhancement of conversion efficiency when the pump field excites the guided mode resonances of the grating. Under these circumstances the spectrum near the pump wavelength
With its direct correspondence to electronic structure, angle-resolved photoemission spectroscopy (ARPES) is a ubiquitous tool for the study of solids. When extended to the temporal domain, time-resolved (TR)-ARPES offers the potential to move beyond