ﻻ يوجد ملخص باللغة العربية
The recent observation of high-harmonic generation from solids creates a new possibility for engineering fundamental strong-field processes by patterning the solid target with subwavelength nanostructures. All-dielectric metasurfaces exhibit high damage thresholds and strong enhancement of the driving field, making them attractive platforms to control high-harmonics and other high-field processes at nanoscales. Here we report enhanced non-perturbative high-harmonic emission from a Si metasurface that possesses a sharp Fano resonance resulting from a classical analogue of electromagnetically induced transparency. Harmonic emission is enhanced by more than two orders of magnitude compared to unpatterned samples. The enhanced high harmonics are highly anisotropic with excitation polarization and are selective to excitation wavelength due to its resonant feature. By combining nanofabrication technology and ultrafast strong-field physics, our work paves the way for designing new compact ultrafast photonic devices that operate under high intensities and short wavelengths.
Strong field-confinement, long-lifetime resonances, and slow-light effects suggest that meta surfaces are a promising tool for nonlinear optical applications. These nanostructured devices have been utilized for relatively high efficiency solid-state
Resonant metasurfaces have received extensive attention due to their sharp spectral feature and extraordinary field enhancement. In this work, by breaking the in-plane symmetry of silicon nanopillars, we achieve a sharp Fano resonance. The far-field
The enhancement and control of non-linear phenomena at a nanometer scale has a wide range of applications in science and in industry. Among these phenomena, high-harmonic generation in solids is a recent focus of research to realize next generation p
High-order harmonic generation (HHG) from crystals offers a new source of coherent extreme ultraviolet (XUV) attosecond radiation.
We study second harmonic generation in nonlinear, GaAs gratings. We find large enhancement of conversion efficiency when the pump field excites the guided mode resonances of the grating. Under these circumstances the spectrum near the pump wavelength