ترغب بنشر مسار تعليمي؟ اضغط هنا

Recursion relations for chromatic coefficients for graphs and hypergraphs

68   0   0.0 ( 0 )
 نشر من قبل Angelo Lucia
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We establish a set of recursion relations for the coefficients in the chromatic polynomial of a graph or a hypergraph. As an application we provide a generalization of Whitneys broken cycle theorem for hypergraphs, as well as deriving an explicit formula for the linear coefficient of the chromatic polynomial of the $r$-complete hypergraph in terms of roots of the Taylor polynomials for the exponential function.



قيم البحث

اقرأ أيضاً

In this paper, we present some properties on chromatic polynomials of hypergraphs which do not hold for chromatic polynomials of graphs. We first show that chromatic polynomials of hypergraphs have all integers as their zeros and contain dense real z eros in the set of real numbers. We then prove that for any multigraph $G=(V,E)$, the number of totally cyclic orientations of $G$ is equal to the value of $|P(H,-1)|$, where $P(H,lambda)$ is the chromatic polynomial of a hypergraph $H$ which is constructed from $G$. Finally we show that the multiplicity of root $0$ of $P(H,lambda)$ may be at least $2$ for some connected hypergraphs $H$, and the multiplicity of root $1$ of $P(H,lambda)$ may be $1$ for some connected and separable hypergraphs $H$ and may be $2$ for some connected and non-separable hypergraphs $H$.
We report in this article three- and four-term recursion relations for Clebsch-Gordan coefficients of the quantum algebras $U_q(su_2)$ and $U_q(su_{1,1})$. These relations were obtained by exploiting the complementarity of three quantum algebras in a $q$-deformation of $sp(8, gr)$.
Let Q(n,c) denote the minimum clique size an n-vertex graph can have if its chromatic number is c. Using Ramsey graphs we give an exact, albeit implicit, formula for the case c is at least (n+3)/2.
We introduce new methods for understanding the topology of $Hom$ complexes (spaces of homomorphisms between two graphs), mostly in the context of group actions on graphs and posets. We view $Hom(T,-)$ and $Hom(-,G)$ as functors from graphs to posets, and introduce a functor $(-)^1$ from posets to graphs obtained by taking atoms as vertices. Our main structural results establish useful interpretations of the equivariant homotopy type of $Hom$ complexes in terms of spaces of equivariant poset maps and $Gamma$-twisted products of spaces. When $P = F(X)$ is the face poset of a simplicial complex $X$, this provides a useful way to control the topology of $Hom$ complexes. Our foremost application of these results is the construction of new families of `test graphs with arbitrarily large chromatic number - graphs $T$ with the property that the connectivity of $Hom(T,G)$ provides the best possible lower bound on the chromatic number of $G$. In particular we focus on two infinite families, which we view as higher dimensional analogues of odd cycles. The family of `spherical graphs have connections to the notion of homomorphism duality, whereas the family of `twisted toroidal graphs lead us to establish a weakened version of a conjecture (due to Lov{a}sz) relating topological lower bounds on chromatic number to maximum degree. Other structural results allow us to show that any finite simplicial complex $X$ with a free action by the symmetric group $S_n$ can be approximated up to $S_n$-homotopy equivalence as $Hom(K_n,G)$ for some graph $G$; this is a generalization of a result of Csorba. We conclude the paper with some discussion regarding the underlying categorical notions involved in our study.
In this short note we observe that recent results of Abert and Hubai and of Csikvari and Frenkel about Benjamini--Schramm continuity of the holomorphic moments of the roots of the chromatic polynomial extend to the theory of dense graph sequences. We offer a number of problems and conjectures motivated by this observation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا