ﻻ يوجد ملخص باللغة العربية
We establish a set of recursion relations for the coefficients in the chromatic polynomial of a graph or a hypergraph. As an application we provide a generalization of Whitneys broken cycle theorem for hypergraphs, as well as deriving an explicit formula for the linear coefficient of the chromatic polynomial of the $r$-complete hypergraph in terms of roots of the Taylor polynomials for the exponential function.
In this paper, we present some properties on chromatic polynomials of hypergraphs which do not hold for chromatic polynomials of graphs. We first show that chromatic polynomials of hypergraphs have all integers as their zeros and contain dense real z
We report in this article three- and four-term recursion relations for Clebsch-Gordan coefficients of the quantum algebras $U_q(su_2)$ and $U_q(su_{1,1})$. These relations were obtained by exploiting the complementarity of three quantum algebras in a $q$-deformation of $sp(8, gr)$.
Let Q(n,c) denote the minimum clique size an n-vertex graph can have if its chromatic number is c. Using Ramsey graphs we give an exact, albeit implicit, formula for the case c is at least (n+3)/2.
We introduce new methods for understanding the topology of $Hom$ complexes (spaces of homomorphisms between two graphs), mostly in the context of group actions on graphs and posets. We view $Hom(T,-)$ and $Hom(-,G)$ as functors from graphs to posets,
In this short note we observe that recent results of Abert and Hubai and of Csikvari and Frenkel about Benjamini--Schramm continuity of the holomorphic moments of the roots of the chromatic polynomial extend to the theory of dense graph sequences. We