ﻻ يوجد ملخص باللغة العربية
In this paper, we present some properties on chromatic polynomials of hypergraphs which do not hold for chromatic polynomials of graphs. We first show that chromatic polynomials of hypergraphs have all integers as their zeros and contain dense real zeros in the set of real numbers. We then prove that for any multigraph $G=(V,E)$, the number of totally cyclic orientations of $G$ is equal to the value of $|P(H,-1)|$, where $P(H,lambda)$ is the chromatic polynomial of a hypergraph $H$ which is constructed from $G$. Finally we show that the multiplicity of root $0$ of $P(H,lambda)$ may be at least $2$ for some connected hypergraphs $H$, and the multiplicity of root $1$ of $P(H,lambda)$ may be $1$ for some connected and separable hypergraphs $H$ and may be $2$ for some connected and non-separable hypergraphs $H$.
Motivated by the study of Macdonald polynomials, J. Haglund and A. Wilson introduced a nonsymmetric polynomial analogue of the chromatic quasisymmetric function called the emph{chromatic nonsymmetric polynomial} of a Dyck graph. We give a positive ex
J. Makowsky and B. Zilber (2004) showed that many variations of graph colorings, called CP-colorings in the sequel, give rise to graph polynomials. This is true in particular for harmonious colorings, convex colorings, mcc_t-colorings, and rainbow co
We establish a set of recursion relations for the coefficients in the chromatic polynomial of a graph or a hypergraph. As an application we provide a generalization of Whitneys broken cycle theorem for hypergraphs, as well as deriving an explicit for
The Euler characteristic of a semialgebraic set can be considered as a generalization of the cardinality of a finite set. An advantage of semialgebraic sets is that we can define negative sets to be the sets with negative Euler characteristics. Apply
The purpose of this paper is twofold. Firstly, we generalize the notion of characteristic polynomials of hyperplane and toric arrangements to those of certain abelian Lie group arrangements. Secondly, we give two interpretations for the chromatic qua