ترغب بنشر مسار تعليمي؟ اضغط هنا

Decomposing Changes in the Distribution of Real Hourly Wages in the U.S

85   0   0.0 ( 0 )
 نشر من قبل Ivan Fernandez-Val
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze the sources of changes in the distribution of hourly wages in the United States using CPS data for the survey years 1976 to 2019. We account for the selection bias from the employment decision by modeling the distribution of annual hours of work and estimating a nonseparable model of wages which uses a control function to account for selection. This allows the inclusion of all individuals working positive hours and provides a fuller description of the wage distribution. We decompose changes in the distribution of wages into composition, structural and selection effects. Composition effects have increased wages at all quantiles but the patterns of change are generally determined by the structural effects. Evidence of changes in the selection effects only appear at the lower quantiles of the female wage distribution. These various components combine to produce a substantial increase in wage inequality.



قيم البحث

اقرأ أيضاً

We examine the impact of annual hours worked on annual earnings by decomposing changes in the real annual earnings distribution into composition, structural and hours effects. We do so via a nonseparable simultaneous model of hours, wages and earning s. Using the Current Population Survey for the survey years 1976--2019, we find that changes in the female distribution of annual hours of work are important in explaining movements in inequality in female annual earnings. This captures the substantial changes in their employment behavior over this period. Movements in the male hours distribution only affect the lower part of their earnings distribution and reflect the sensitivity of these workers annual hours of work to cyclical factors.
We develop a distribution regression model under endogenous sample selection. This model is a semiparametric generalization of the Heckman selection model that accommodates much richer patterns of heterogeneity in the selection process and effect of the covariates. The model applies to continuous, discrete and mixed outcomes. We study the identification of the model, and develop a computationally attractive two-step method to estimate the model parameters, where the first step is a probit regression for the selection equation and the second step consists of multiple distribution regressions with selection corrections for the outcome equation. We construct estimators of functionals of interest such as actual and counterfactual distributions of latent and observed outcomes via plug-in rule. We derive functional central limit theorems for all the estimators and show the validity of multiplier bootstrap to carry out functional inference. We apply the methods to wage decompositions in the UK using new data. Here we decompose the difference between the male and female wage distributions into four effects: composition, wage structure, selection structure and selection sorting. After controlling for endogenous employment selection, we still find substantial gender wage gap -- ranging from 21% to 40% throughout the (latent) offered wage distribution that is not explained by observable labor market characteristics. We also uncover positive sorting for single men and negative sorting for married women that accounts for a substantive fraction of the gender wage gap at the top of the distribution. These findings can be interpreted as evidence of assortative matching in the marriage market and glass-ceiling in the labor market.
We develop a new approach for estimating average treatment effects in the observational studies with unobserved group-level heterogeneity. A common approach in such settings is to use linear fixed effect specifications estimated by least squares regr ession. Such methods severely limit the extent of the heterogeneity between groups by making the restrictive assumption that linearly adjusting for differences between groups in average covariate values addresses all concerns with cross-group comparisons. We start by making two observations. First we note that the fixed effect method in effect adjusts only for differences between groups by adjusting for the average of covariate values and average treatment. Second, we note that weighting by the inverse of the propensity score would remove biases for comparisons between treated and control units under the fixed effect set up. We then develop three generalizations of the fixed effect approach based on these two observations. First, we suggest more general, nonlinear, adjustments for the average covariate values. Second, we suggest robustifying the estimators by using propensity score weighting. Third, we motivate and develop implementations for adjustments that also adjust for group characteristics beyond the average covariate values.
We consider a situation where the distribution of a random variable is being estimated by the empirical distribution of noisy measurements of that variable. This is common practice in, for example, teacher value-added models and other fixed-effect mo dels for panel data. We use an asymptotic embedding where the noise shrinks with the sample size to calculate the leading bias in the empirical distribution arising from the presence of noise. The leading bias in the empirical quantile function is equally obtained. These calculations are new in the literature, where only results on smooth functionals such as the mean and variance have been derived. Given a closed-form expression for the bias, bias-corrected estimator of the distribution function and quantile function can be constructed. We provide both analytical and jackknife corrections that recenter the limit distribution and yield confidence intervals with correct coverage in large samples. These corrections are non-parametric and easy to implement. Our approach can be connected to corrections for selection bias and shrinkage estimation and is to be contrasted with deconvolution. Simulation results confirm the much-improved sampling behavior of the corrected estimators.
This paper provides a method to construct simultaneous confidence bands for quantile functions and quantile effects in nonlinear network and panel models with unobserved two-way effects, strictly exogenous covariates, and possibly discrete outcome va riables. The method is based upon projection of simultaneous confidence bands for distribution functions constructed from fixed effects distribution regression estimators. These fixed effects estimators are debiased to deal with the incidental parameter problem. Under asymptotic sequences where both dimensions of the data set grow at the same rate, the confidence bands for the quantile functions and effects have correct joint coverage in large samples. An empirical application to gravity models of trade illustrates the applicability of the methods to network data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا