ﻻ يوجد ملخص باللغة العربية
We develop a new approach for estimating average treatment effects in the observational studies with unobserved group-level heterogeneity. A common approach in such settings is to use linear fixed effect specifications estimated by least squares regression. Such methods severely limit the extent of the heterogeneity between groups by making the restrictive assumption that linearly adjusting for differences between groups in average covariate values addresses all concerns with cross-group comparisons. We start by making two observations. First we note that the fixed effect method in effect adjusts only for differences between groups by adjusting for the average of covariate values and average treatment. Second, we note that weighting by the inverse of the propensity score would remove biases for comparisons between treated and control units under the fixed effect set up. We then develop three generalizations of the fixed effect approach based on these two observations. First, we suggest more general, nonlinear, adjustments for the average covariate values. Second, we suggest robustifying the estimators by using propensity score weighting. Third, we motivate and develop implementations for adjustments that also adjust for group characteristics beyond the average covariate values.
The lack of longitudinal studies of the relationship between the built environment and travel behavior has been widely discussed in the literature. This paper discusses how standard propensity score matching estimators can be extended to enable such
Selective inference (post-selection inference) is a methodology that has attracted much attention in recent years in the fields of statistics and machine learning. Naive inference based on data that are also used for model selection tends to show an
This paper proposes a logistic undirected network formation model which allows for assortative matching on observed individual characteristics and the presence of edge-wise fixed effects. We model the coefficients of observed characteristics to have
In nonseparable triangular models with a binary endogenous treatment and a binary instrumental variable, Vuong and Xu (2017) show that the individual treatment effects (ITEs) are identifiable. Feng, Vuong and Xu (2019) show that a kernel density esti
We analyze the sources of changes in the distribution of hourly wages in the United States using CPS data for the survey years 1976 to 2019. We account for the selection bias from the employment decision by modeling the distribution of annual hours o